

CMS

in collaboration with ROOT Data Analysis Framework

an a number of a state of a

Elisabetta Manca - Scuola Normale Superiore, INFN Pisa & CERN

Street a

Misura della massa del W con tecniche di Big Data

W mass in a "traditional" way

Pythia8(MPI)+Papas simulaton: pp2W2munu (8TeV), noPU

need to look at transverse

quantities due to the presence of

the neutrino in the final state

W mass in a "traditional" way

Pythia8(MPI)+Papas simulaton: pp2W2munu (8TeV), noPU

not Lorentz invariant measurement is strongly dependent on the **production model**

however transverse quantities are

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
m_{T} - p_{T}^{ℓ} , W^{\pm} , e - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

uncertainty on ATLAS measurement dominated by **theory modelling** in our paper we have shown that it is possible to unfold the rapidity distribution of the W directly from data

S with m

About the rapidity and helicity distributions of the W bosons produced at LHC

E. Manca, a,b,1 O. Cerri, a,b N. Foppiani a,b and G. Rolandi a,b,c

^aScuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, 56126 Italy

error bars in the fit smaller than PDF prediction!

what about transverse momentum?

things start to look much more complicated...

A_i coefficients are functions of W production and multiply spherical harmonics of 2nd order

 $\theta \text{ and } \varphi \text{ of lepton}$ in W rest frame $\frac{d\sigma}{dp_T^2 dY d \cos \theta d\phi} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^2 dY} [(1 + \cos^2 \theta)$ W p_T and rapidity $+ \frac{1}{2} A_0 (1 - 3\cos^2 \theta) + A_1 \sin(2\theta) \cos \phi$ in lab frame $+ \frac{1}{2} A_2 \sin^2 \theta \cos(2\phi) + A_3 \sin \theta \cos \phi + A_4 \cos \theta$ $+ A_5 \sin^2 \theta \sin(2\phi) + A_6 \sin(2\theta) \sin \phi + A_7 \sin \theta \sin \phi]$

given **y** and W \mathbf{p}_T , a lepton in the lab frame has a \mathbf{p}_T , $\mathbf{\eta}$ and a $\mathbf{\phi}$ (with respect to the $\mathbf{\phi}$ of the W)

however the three variables have a constraint (in rest frame $E^* = M/2$)

given **y** and W \mathbf{p}_T , a lepton in the lab frame has a \mathbf{p}_T , $\mathbf{\eta}$ and a $\mathbf{\phi}$ (with respect to the $\mathbf{\phi}$ of the W)

however the three variables have a constraint (in rest frame $E^* = M/2$)

y = 0, W p_T = 20 GeV

angular coefficients templates

changing basis from helicity amplitudes to angular coefficients

$$\frac{d\sigma_{W^{\pm}}}{d|y|}_{L.R.0} \to \frac{d\sigma_{W^{\pm}}^{UL}}{d|y|dq_{T}}, \ A^{\pm}_{0,1,2,3,4}(q_{T},|y|), \ M_{W}$$

and adding a finer binning in W pT

it is possible to measure simultaneously the double differential distribution of the W rapidity and pT *and its mass*

final prospects

Uncertainty on PDF negligible (<3 MeV) W⁺, $|y| \ge 0.0$, $q_T \ge 0$ GeV, 30M events: fit (v_{ii}, A_k, M_W) Entries/5 MeV 50 Stat: $\Delta M_W = 28.7 \text{ MeV}$ PDF: ΔM_w = 3.2 MeV 40 $\mu_{R,F}$: ΔM_W = 12.1 MeV projections to data sample 7 pts: $\Delta M_w = 17.8 \text{ MeV}$ collected by CMS in full Run2 30 ······ True show 5 MeV uncertainty is within reach 20 80.55 M_w (GeV) 80.3 80.35 80.4 80.5 80.45 Uncertainty on scale much reduced (residual unc. likely due to stat. *fluctuation*)

and well and

CMS data taking period	2016	2017	2018
number of events into acceptance	35 fb ⁻¹ ~100 M	45 fb ⁻¹ ~130 M	65 fb ⁻¹ ~185 M

NB: for the analysis to work, MC must have ~10 more statistics than data!

do we have the tools to process such a huge number of events?

the new ROOT interface for expressing parallelism

r2

the idea: wrap RDF into a mini-framework that executes some modules following a graph path

South an

some action

= a python class

= a C++ class (inherits from a virtual mother class)

```
class filter:
                                                   #include "filter.h"
    def __init__(self, string):
                                                   RNode filter::run(RNode d){
      self.myTH1 = []
                                                      auto d1=d.Filter("Mystring_");
      self.myTH2 = []
      self.myTH3 = []
                                                      return d1
      self.string = string
                                                   }
    def run(self,d):
                                                   std::vector<R00T::RDF::RResultPtr<TH1D>> filter::getTH1(){
      self.d = d.Filter(self.string)
                                                      return _h1List;
      return self.d
                                                   }
    def getTH1(self):
                                                   std::vector<ROOT::RDF::RResultPtr<TH2D>> filter::getTH2(){
      return self.myTH1
                                                      return _h2List;
    def getTH2(self):
                                                   }
       return self.myTH2
                                                   std::vector<ROOT::RDF::RResultPtr<TH3D>> filter::getTH3(){
    def getTH3(self):
                                                      return h3List;
      return self.myTH3
                                                   }
```

an example of action: extraction of the "Angular Coefficients" from a WJets Montecarlo

spherical harmonics 2nd order (W has spin 1!)

$$m = \frac{\sum P_k(\cos\theta, \phi)w_i}{\sum w_i}$$

task: compute

$$\sigma_m = \sqrt{\sigma_{P_k}^2 \frac{\sum w_i^2}{(\sum w_i)^2}}$$

for each bin of W p_T and y for each harmonics k = 0,...,7

implementation:

▶ 1 TH2 filled with w

for each harmonics (0 to 7):

▶ 1 TH2 filled with P_k and weighted with *w*

 \gg 1 TH2 filled with P_k² (to compute variance)

in RDF language: about 10 Filters and 10 Defines

a scaling plot:

2*192 cores Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz
Lots of SSD storage, bleeding edge hardware
@ Scuola Normale Superiore
27 GB input data (~4000 cluster)

S will rear

results