

Massimiliano Antonello

on behalf of the: INFN RD-FA Collaboration

Napoli - 10.04.2019

IDEA:

a detector concept for future e⁺e⁻ colliders

IDEA Detector

Innovative Detector for Electron-positron Accelerator (*IDEA*) is a detector concept specifically designed for operation at the future leptonic colliders.

Future Circular Collider*:
Circumference: 97.76 km. √s: 90 - 365 GeV.
Physics Program: Z, W, Higgs, top.

*Circular Electron Positron Collider**: *Circumference*: 100 km. √*s*: 90 - 240 GeV. *Physics Program*: Z, W, Higgs.

*FCC Study: Vol.2 - The Lepton Collider (FCC-ee) **CDR** (2018) FCC Collaboration, CERN-ACC-2018-0057

Detector requirements

Focus on *precision measurements*, new rare processes, tiny violations of established symmetries.

	PA 30 mrad		Property					CEPC		
0.3 m _	PL 13.4 m 10.6 m Booster PB Interaction Point			Z	W	H (ZH)	tī	Z	W	H (ZH)
PJ RF system	$(\underline{E}) \xrightarrow{f_{CC-ee}} F_{CC-ee} \xrightarrow{f_{CC-e}} F_{CC-e} \xrightarrow{f_{CC-e}} \xrightarrow$	PD RF system	Beam Energy (GeV)	45.6	80	120	182.5	45.6	80	120
			Luminosity/IP (10 ³⁴ cm ⁻² s ⁻¹)	230	28	8.5	1.55	32	10	3
	PH Interaction PF		Bunches/beam	16640	2000	393	48	12000	1524	242
	PG		Bunch separation (ns)	19.6	163	994	3396	25	210	680

Luminosity up to $\sim 10^{36}$ cm⁻²s⁻¹ \Rightarrow Non-negligible machine background.

Beam time structure ⇒ Cooling issue: No power pulsing for vertex.

Emittance preservation @ **IR** ⇒ Solenoid magnetic field limited to 2 Tesla.

Detector requirements

Clean experimental environment = high precision measurements:

Tight control of *acceptance systematic error* (acceptance boundaries of few µm). Excellent *momentum resolution* and *flavour tagging*.

Low-mass vertex and tracking detectors, high granularity.

Excellent *energy resolution*.

Employ excellent *calorimeters* (PFA, dual-readout).

Good $e-\gamma-\pi_0$ discrimination (to identify τ leptons and measure their polarisation).

Physics Process	Measured quantity	Detector	Required Performance				
$ZH \rightarrow l^+ l^- X$ $H \rightarrow \mu^+ \mu^-$	H mass, cross section BR $(H \rightarrow \mu^+ \mu^-)$	Tracker	Momentum resolution (GeV/c) $\Delta(1/p_T) \sim 2 \times 10^{-5} \oplus 1 \times 10^{-3}/(p_T sin\theta)$				
$H \rightarrow b\bar{b}, c\bar{c}, gg$	c/b tagging, BR $(H \rightarrow b\bar{b}, c\bar{c}, gg)$	Vertex	Impact parameter resolution (µm) $\sigma_{r\phi} \sim 5 \oplus 10/(psin^{3/2}\theta)$				
$H \rightarrow q\bar{q}, VV$	Separation of W/Z/H in di- jet modes	ECAL/ HCAL	Jet energy resolution (GeV) $\sigma_E^{jet}/E \sim 3 - 5\%$ for jets above 50 GeV				
$H \to \gamma \gamma$	BR $(H \to \gamma \gamma)$	ECAL	$\sigma_E \sim 16 \% / \sqrt{E} \oplus 1 \%$				

IDEA Layout

Beam pipe: R~1.5 cm Vertex: 5 MAPS layers

R = 1.7-34 cm

Drift Chamber:

4 m long, R = 35-200 cm Outer Silicon Layers: strips Superconducting solenoid coil:

2 *T*, R ~ 2.1-2.4 m

0.74 *X*₀, **0.16** λ @ 90°

Preshower: $\sim 1 X_0$

Dual-Readout Calorimeter:

 $2m / 7 \lambda_{int}$ Yoke + Muon chamber

5

Vertex detector

Requirements

Fast readout (*one full frame read-out in less than* $\Delta t \sim 85 \mu s$), low power consumption (<20 *mW/cm*²), low material budget (0.15% X₀), single point resolution of: ~ $5 \mu m$.

Vertex

Today: ALICE ITS* (5 μ m spatial resolution, >100 kHz readout, 0.3-1% X₀, 41-27 mW/cm²). Tomorrow: Exploit what is being done (e.g. ARCADIA - INFN project).

*MAPS on high resistivity substrates: status and perspective A.Rivetti, **CEPC International Workshop 2018**

Tracking system

Requirements

Large solid angle coverage ($|\cos \theta| = 0.99$), *high granularity* and *high transparency* detector. Good momentum resolution: at level of $\Delta_{p_T}/p_T \sim 10^{-5}p_T$ (a factor 10 better than LEP).

Drift Chamber

Follows design of *KLOE* and *MEG2* experiments*.

L = 400 cm, R = 35-200 cm. Gas: 90% He - 10% $iC_4H_{10.}$ Material: 1.6% X_0 (barrel), 5% X_0 (fwd/bkwd). Drift length: 1 cm, drift time: 350 ns. Spatial res: $\sigma_{xy} < 100 \ \mu m$, $\sigma_z < 1000 \ \mu m$. 56 448 squared drift cells. Cell size: 12 - 13.5 mm. Layers: 14 SL × 8 layers = 112. Vertex+DCH+Si wrap: ~ 0.27% @ 100 GeV.

Tracking system

Requirements

Large solid angle coverage ($|\cos \theta| = 0.99$), *high granularity* and *high transparency* detector. Good momentum resolution: at level of $\Delta_{p_T}/p_T \sim 10^{-5}p_T$ (a factor 10 better than LEP).

Calorimeter

Requirements

Jet energy resolution: $\sigma_E^{jet}/E \sim 3 - 5\%$ (for jet above 50 GeV), excellent *particle ID* capability ($\epsilon(l) > 99\%$, <2% *mis-ID*), em energy resolution: $\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%$.

Dual-Readout calorimeter

Built on DREAM/RD52 experience*.

The concept: do not spoil e.m. resolution to get h/e=1 but *measure* f_{em} event-by-event. $S = E[f_{em} + (h/e)_S(1 - f_{em})]$ $C = E[f_{em} + (h/e)_C(1 - f_{em})]$ $E = \frac{S - \chi C}{1 - \chi} \quad \text{with:} \quad \chi = \frac{1 - (h/e)_S}{1 - (h/e)_C}$ independent of both *energy* and *type of hadrons*.

Calorimeter

Requirements

Jet energy resolution: $\sigma_E^{jet}/E \sim 3 - 5\%$ (for jet above 50 GeV), excellent *particle ID* capability ($\epsilon(l) > 99\%$, <2% *mis-ID*), em energy resolution: $\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%$.

Dual-Readout calorimeter

Built on DREAM/RD52 experience*.

From *Geant4* simulation*: em resolution: ~ $11 \% / \sqrt{E} \oplus 1 \%$. hadronic (jet) resolution: ~ $34 \% / \sqrt{E}$.

A multivariate analysis reached a *particle ID* capability of: $\varepsilon(e^{-}) = 99.8\%$, <0.2% π^{-} *mis-ID*.

Millimiter transverse granularity reached with SiPM-based readout.

Muon system

Requirements

High granularity (for π_0 ID near charged hadrons), *low cost* (area of several hundred of m²). (Pre-Shower: Acceptance definition for γ @ level of μm , good $e-\gamma-\pi_0$ *discrimination* power).

µ-RWell

A special, *low cost*, MPGD technology promising for its characteristics and the possibility to be *industrialised** (already proven for low rate (<100 kHz/cm²) applications (i.e. SHiP)).

*It is essentially consists of:*1. A patterned *Kapton* foil (*amplification stage*).

- 2. A "*resistive stage*" for the discharge suppression & current evacuation.
- 3.A *patterned PCB* for readout.

Muon system

Requirements

High granularity (for π_0 ID near charged hadrons), *low cost* (area of several hundred of m²). (Pre-Shower: Acceptance definition for γ @ level of μm , good $e-\gamma-\pi_0$ *discrimination* power).

µ-RWell

A special, *low cost*, MPGD technology promising for its characteristics and the possibility to be *industrialised** (already proven for low rate (<100 kHz/cm²) applications (i.e. SHiP)).

Momentum measurement:

Vertex+DCH+Si wrap: ~ 0.27% @ 100 GeV.

ID ok if isolated particles.

Better muon ID in jets:

More filter behind calorimeter (iron yoke >50 cm Fe). 3-4 detector stations, 2 layers

(50 x 50 cm²) of μ -RWell:

 μ track coordinates pos res: < 60 μ *m*.

IDEA is a detector concept, **based on proven techniques**, capable to fulfill the requirements needed for the future e⁺e⁻ colliders physics program.

IDEA is a detector concept, **based on proven techniques**, capable to fulfill the requirements needed for the future e⁺e⁻ colliders physics program.

Work in progress to *optimise* the design: Detector **R&D** studies.

ARCADIA* project @ INFN:

Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays.

Goal: full depletion in 100-500 μm.
Technology: 110 nm CMOS, high-resistivity bulk.
Both NMOS and PMOS transistors.
Power consumption (<20 mW/cm²)
Custom backside process developed (with LFoundry).
Pixel capacitance lower than 20 fF.

IDEA is a detector concept, **based on proven techniques**, capable to fulfill the requirements needed for the future e⁺e⁻ colliders physics program.

Work in progress to *optimise* the design: Detector **R&D** studies.

Sipm-based dual-readout

beam tests*.

Signal grouping* studies.

Longitudinal segmentation studies (Staggered module*).

25 cm (1 λ₁)

IDEA is a detector concept, **based on proven techniques**, capable to fulfill the requirements needed for the future e⁺e⁻ colliders physics program.

Work in progress to *optimise* the design: Detector **R&D** studies.

Technology transfer to Industry (ELTOS, TECHTRA).

High rate layouts* (>1 MHz/cm²):

Double Resistive layer.

Single Resistive layout with a grounding grid.

M.Giovanetti talk: The µ-RWELL detector for high particle rate.

IDEA is a detector concept, **based on proven techniques**, capable to fulfill the requirements needed for the future e⁺e⁻ colliders physics program.

Work in progress to *optimise* the design: Detector **R&D** studies.

In September 2018 @ CERN a first *combined IDEA beam test** was performed.

IDEA is a detector concept, **based on proven techniques**, capable to fulfill the requirements needed for the future e⁺e⁻ colliders physics program.

Work in progress to *optimise* the design: *Geometry* implementation on FCCSW and GEANT4. *Benchmark studies* (just started) with both GEANT4 & Delphes simulation.

Thank you

Additional Slides

Beam test results

Test beam data (Pre-Shower GEM 2): Lead thickness: 5mm (1 X_0), 8, 11, 15mm. The # of clusters increases with lead thicknesses while the dimension of the clusters remains almost constant.

Calorimeter (20 GeV e-):No noticeable impact on the meanenergy and resolution.Small impact on the shower shape.

Solenoid

Requirements

Emittance preservation @ IR:

Solenoid magnetic field limited to 2-3 T.

Solenoid

2 T field: small yoke thickness (50-100 cm Fe) and cost reduction over large coil.
Thin (~ 30 cm total): calorimeter can be located *outside* coil.

```
Low mass: ~ 0.74 X_0, 0.16 \lambda (@ \vartheta = 90^\circ).
```

Free bore diameter: 4 m. Stored energy: 170 MJ.

Coil mass: 8 t. Coil mass inner radius: 2.25 m. Coil mass thickness: 0.03 m. Coil mass length: 5 m.

Solenoid

Requirements

Emittance preservation @ IR:

Solenoid magnetic field limited to 2-3 T.

Solenoid

Magnetic field needed only in the *tracker* and *muon chambers*.

When coil is positioned *inside*: factor 4.2 in stored energy and 2.1 in cost reduction.

e+e- collider potential

Z pole, WW:

High *precision measurements @ Z peak* (> of one order of magnitude better than LEP). Eliminate *parametric uncertainty* from $\alpha_{EM}(Z)$, Mw, $\sin(\vartheta_W)$, etc. Need N³LO SM corrections from theory: doable in 5-10 years. Outstanding *flavour physics*.

HZ:

One order of magnitude better than LHC. *No model dependence* in BR measurements. New *physics scale*: $\Lambda \ge (1TeV)/\sqrt{(\delta g_{HXX}/g_{HXX}^{SM})/5\%}$. *Higgs couplings* can be measured @ the % *level*.

t:

More than one order of magnitude better than LHC: *mass, width, Yukawa* coupling. *Few theory uncertainties* in mass interpretation from threshold scan. Eliminate *top related parametric uncertainties*.