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Figure 18: Exclusion regions from haloscope searches (in green) expressed in terms of |Ca�|
p
%̃a. We

display Ca� in the sense of Ca� = ga�fA(2⇡/↵) from (2.42) by rescaling sensitivities on ga� by the
known relation between fA,mA. Some of the regions tentatively at reach in future experiments are
indicated as semi-transparent green areas. Some of those regions are dependent, to di↵erent extents, on
successful completion of R&D on novel detection concepts, as explained in the text. Regions explored
and projected by helioscopes are also shown (in blue). As usual the yellow band and orange line
represent the QCD axion models and the benchmark KSVZ model respectively. The sketch on top
shows the mass ranges for which total DM density can be obtained in di↵erent models, as explained in
section 3.1.1.

9 T magnet at CERN [551, 552]. Figure 17 shows one of them. The use of these type of cavities was
proposed in [532] and has interesting technical advantages. The resonant frequency in these geometries
is mostly determined by the smaller dimensions of the parallelepiped, and therefore V can be increased
(in principle, arbitrarily) by increasing its length. In practice, mode crossing and mode crowding limits
the length of the cavities, but this could be overcome by phase matching several smaller cavities. Cur-
rent CAST-CAPP design considers 40 cm long cavities. Tuning of these cavities can be accomplished
by the use of small movable slabs inside the cavity or by having the cavity cut in two longitudinally
and precisely moving the two halves. This approach should give competitive sensitivity for a small
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✤ A great exp. opportunity (next 10 years ?) 
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Figure 18: Exclusion regions from haloscope searches (in green) expressed in terms of |Ca�|
p
%̃a. We

display Ca� in the sense of Ca� = ga�fA(2⇡/↵) from (2.42) by rescaling sensitivities on ga� by the
known relation between fA,mA. Some of the regions tentatively at reach in future experiments are
indicated as semi-transparent green areas. Some of those regions are dependent, to di↵erent extents, on
successful completion of R&D on novel detection concepts, as explained in the text. Regions explored
and projected by helioscopes are also shown (in blue). As usual the yellow band and orange line
represent the QCD axion models and the benchmark KSVZ model respectively. The sketch on top
shows the mass ranges for which total DM density can be obtained in di↵erent models, as explained in
section 3.1.1.

9 T magnet at CERN [551, 552]. Figure 17 shows one of them. The use of these type of cavities was
proposed in [532] and has interesting technical advantages. The resonant frequency in these geometries
is mostly determined by the smaller dimensions of the parallelepiped, and therefore V can be increased
(in principle, arbitrarily) by increasing its length. In practice, mode crossing and mode crowding limits
the length of the cavities, but this could be overcome by phase matching several smaller cavities. Cur-
rent CAST-CAPP design considers 40 cm long cavities. Tuning of these cavities can be accomplished
by the use of small movable slabs inside the cavity or by having the cavity cut in two longitudinally
and precisely moving the two halves. This approach should give competitive sensitivity for a small
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The Axion Rush

ADMX (Seattle)
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✤ A great exp. opportunity (next 10 years ?) 
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Poster by Alessio Rettaroli yesterday



The Axion Rush
In a small context

OSQAR, CERN

IAXO, DESY?

ARIADNE, Reno

ADMX, Wash. U

ABRACADABRA, Yale

ADMX,-HF Yale
CASPER, Mainz

ALPS-II, DESY

CAST, CERN

MADMAX, (?)

QUAX
QUAXgsgp

CAPP

ORGAN, UWA,Perth

BMV, Toulouse
PVLAS, Legnaro

ADMX+, Fermilab

DM Radio, Stanford

BRASS DESY

[Redondo, circa end of 2017]

✤ A great exp. opportunity (next 10 years ?) 
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The Axion Rush

Time now to rethink the QCD axion !

1.  Axion couplings [model independent vs. model dependent]

2.  Astro bounds on axion mass [critical approach]

3.  Re-opening the axion window [astrophobia = nucleophobia + electrophobia]

4.  Flavour complementarity

✤ A great exp. opportunity (next 10 years ?) 
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QCD axion
Strong CP problem 

-� π -π � π � π
θ

�(
θ)

promote θ to a dynamical field, 
which relaxes to zero via QCD dynamics 
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QCD axion
Strong CP problem Dark Matter

-� π -π � π � π
θ

�(
θ)

promote θ to a dynamical field, 
which relaxes to zero via QCD dynamics 
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Axions are born as nonrelativistic, classical field oscillations 
Very small mass, yet cold dark matter
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).

vacuum re-alignment mechanism:
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EFT breaks down at energies of order fa

UV completion can still affect low-energy axion properties
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Renormalizable UV Completion of SM Predicting Axion  

>  A singlet complex scalar field     featuring 
a global            symmetry is added to SM  

>  Symmetry is broken by vev 

§  Excitation of modulus:  

§  Excitation of angle: NGB 

>  Quarks (SM or extra) carry PQ charges                                           
such that            is anomalously broken 
due to gluonic triangle anomaly 

       

  
 
 
 
 
 

    

U(1)PQ

U(1)PQ
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Axion Models

Specify anomalous breaking of PQ (fermion sector) 
and spontaneous PQ breaking (scalar sector) 

[Dine, Fischler, Srednicki, 
Zhitnitsky ’80]

[Kim, Shifman, Vainshtein, 
Zakharov ’80]

[Peccei, Quinn, 
Wilczek, Weinberg ’78]

U(1)PQ ⇥ SU(3)2c

BSM fermionsSM fermions

2Higgs 2Higgs+Singlet Higgs+Singlet

DFSZ KSVZPQWW

ex
clu

de
d

hSingleti � v : “Invisible” axion models
J/ ! �a

see however 1710.03764

SM fermions BSM fermions

2Higgs 2Higgs+Singlet Higgs+Singlet

PQWW DFSZ KSVZ

[Zhitnitsky ’80, 
Dine, Fischler, Srednicki ’81]

[Kim ’79, 
Shifman, Vainshtein, Zakharov ’80]

[Peccei, Quinn ’77, 
Weinberg ’78, Wilczek ’78]

ruled out            “Invisible” axion (phase of singlet field)

Axion models [UV completion]
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� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [? ]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [? ? ]. The so-called Nelson-Barr (NB) type models [? ? ] either
require a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather
elaborated theoretical structures [? ]. The Peccei-Quinn (PQ) solution [? ? ? ? ] arguably stands on better
theoretical grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [? ]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [? ? ]. The so-called Nelson-Barr (NB) type models [? ? ] either
require a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather
elaborated theoretical structures [? ]. The Peccei-Quinn (PQ) solution [? ? ? ? ] arguably stands on better
theoretical grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ

• global U(1)PQ (QCD anomalous + spontaneously broken)
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Figure 2: Exclusion ranges as described in the
text. The intervals in the bottom row are the ap-
proximate ADMX, CASPEr, CAST, and IAXO
search ranges, with green regions indicating the
projected reach. Limits on coupling strengths
are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or
variant axions. The limits for the axion-electron
coupling are determined for the DFSZ model
with an axion-electron coupling corresponding
to cos2 β′ = 1/2.

We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <∼ mA <∼ 150 meV

(0.21 eV <∼ mA <∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been

October 1, 2016 19:58

[Ringwald, Rosenberg, Rybka, 
Particle Data Group]

Astro/cosmo exclusions

DM explained / Astro Hints

Lab exclusions

Exp. sensitivities

 L. Di Luzio (Pisa U.) - Nuove frontiere nella caccia all’ assione                                                        05/12



 

– 11–

Axion Mass mA (eV)

fA (GeV)

10-1110-1010-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106

10010110210310410510610710810910101011101210131014101510161017

 ADMX G2  ADMX  IAXO  CASPEr  CAST 

 WDLF (gAee DFSZ)  WDLF Hint 

 HB Stars in GCs (gAγγ DFSZ) 

 K
SV

Z 

 HB Hint 

 RGs in GCs (gAee DFSZ)  RG Hint 

 SN1987A (gApp KSVZ)  Burst Duration  Counts in SuperK 

 Telescope/EBL 

 Hot-DM / CMB / BBN 

 Beam Dump 

 XENON100 (gAee, DFSZ) 

 NS in Cas A Hint (gAnn DFSZ) 

    Dark Matter (post-inflation PQ phase transition) 

 Dark Matter (pre-inflation PQ phase transition) 

   

    Black Holes 

Figure 2: Exclusion ranges as described in the
text. The intervals in the bottom row are the ap-
proximate ADMX, CASPEr, CAST, and IAXO
search ranges, with green regions indicating the
projected reach. Limits on coupling strengths
are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or
variant axions. The limits for the axion-electron
coupling are determined for the DFSZ model
with an axion-electron coupling corresponding
to cos2 β′ = 1/2.

We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <∼ mA <∼ 150 meV

(0.21 eV <∼ mA <∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been

October 1, 2016 19:58

Astro/cosmo exclusions

DM explained / Astro Hints

Lab exclusions

• Horizontal branch star evolution in globular clusters 
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Figure 2: Exclusion ranges as described in the
text. The intervals in the bottom row are the ap-
proximate ADMX, CASPEr, CAST, and IAXO
search ranges, with green regions indicating the
projected reach. Limits on coupling strengths
are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or
variant axions. The limits for the axion-electron
coupling are determined for the DFSZ model
with an axion-electron coupling corresponding
to cos2 β′ = 1/2.

We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <∼ mA <∼ 150 meV

(0.21 eV <∼ mA <∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been

October 1, 2016 19:58

Astro/cosmo exclusions

DM explained / Astro Hints

Lab exclusions

• White dwarfs luminosity function (cooling)
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Figure 2: Exclusion ranges as described in the
text. The intervals in the bottom row are the ap-
proximate ADMX, CASPEr, CAST, and IAXO
search ranges, with green regions indicating the
projected reach. Limits on coupling strengths
are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or
variant axions. The limits for the axion-electron
coupling are determined for the DFSZ model
with an axion-electron coupling corresponding
to cos2 β′ = 1/2.

We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <∼ mA <∼ 150 meV

(0.21 eV <∼ mA <∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been
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DM explained / Astro Hints

Lab exclusions

• Red giants evolution in globular clusters
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Figure 2: Exclusion ranges as described in the
text. The intervals in the bottom row are the ap-
proximate ADMX, CASPEr, CAST, and IAXO
search ranges, with green regions indicating the
projected reach. Limits on coupling strengths
are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or
variant axions. The limits for the axion-electron
coupling are determined for the DFSZ model
with an axion-electron coupling corresponding
to cos2 β′ = 1/2.

We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <∼ mA <∼ 150 meV

(0.21 eV <∼ mA <∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been

October 1, 2016 19:58

Astro/cosmo exclusions

DM explained / Astro Hints

Lab exclusions

• Burst duration of SN1987A nu signal

Exp. sensitivities
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Figure 2: Exclusion ranges as described in the
text. The intervals in the bottom row are the ap-
proximate ADMX, CASPEr, CAST, and IAXO
search ranges, with green regions indicating the
projected reach. Limits on coupling strengths
are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or
variant axions. The limits for the axion-electron
coupling are determined for the DFSZ model
with an axion-electron coupling corresponding
to cos2 β′ = 1/2.

We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <∼ mA <∼ 150 meV

(0.21 eV <∼ mA <∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been

October 1, 2016 19:58

Astro/cosmo exclusions

DM explained / Astro Hints

Lab exclusions

• Bound on axion mass is of practical convenience, but misses model dependence ! 

Exp. sensitivities

?
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?
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?
?

[Ringwald, Rosenberg, Rybka, 
Particle Data Group]
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• Is it possible to decouple the axion both from nucleons and electrons ? 

Astrophobia

nucleophobia + electrophobia  = astrophobia
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Astrophobia

nucleophobia + electrophobia  = astrophobia

1. is it possible at all ? 

• Why interested in such constructions ? 

2. would allow to relax the upper bound on axion mass by ~ 1 order of magnitude

3. would improve visibility at IAXO (axion-photon)

4. would improve fit to stellar cooling anomalies (axion-electron)

5. unexpected connection with flavour 

[Giannotti et al. 1708.02111]

[LDL, Mescia, Nardi, Panci, Ziegler 1712.04940]

• Is it possible to decouple the axion both from nucleons and electrons ? 
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Astrophobia

nucleophobia + electrophobia* = astrophobia

1. is it possible at all ? 

2. would allow to relax the upper bound on axion mass by ~ 1 order of magnitude

3. would improve visibility at IAXO (axion-photon)

4. would improve fit to stellar cooling anomalies (axion-electron)

5. unexpected connection with flavour 

[Giannotti et al. 1708.02111]

[LDL, Mescia, Nardi, Panci, Ziegler 1712.04940]

*easy (e.g. couple the electron to 3rd Higgs uncharged under PQ) 

• Why interested in such constructions ? 

• Is it possible to decouple the axion both from nucleons and electrons ? 
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EFT-1: quarks and gluons (in the basis where cq contains aGGtilde contrib.)

EFT-1I: non-relativistic nucleons

• Axion-nucleon couplings [Kaplan NPB 260 (1985), Srednicki NPB 260 (1985), Georgi, Kaplan, Randall 
PLB 169 (1986), …, Grilli di Cortona et al. 1511.02867]
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The charge dependent part of the couplings is com-
monly denoted as C0

q = (XqR � XqL)/(2N), while
the vector couplings vanish upon integration by part
because of the equation of motion. Matching Eq. (2)
with the non-relativistic axion-nucleon Lagrangian
allows to extract the axion couplings to the nucle-
ons N = p, n [21] which are defined in analogy to the
couplings to the quarks by @µa/(2fa)CNN�µ�5N .
It is convenient to recast the results in terms of the
two linear combinations

Cp + Cn = 0.50(5)
�
C0

u + C0
d � 1

�
� 2�s , (3)

Cp � Cn = 1.273(2) (C0
u � C0

d � 1

3

), (4)

where the two numbers in parenthesis correspond to
fu+fd = 1 (exact) and fu�fd ' 1/3 (approximate),
while �s is a correction appearing in DFSZ which is
dominated by the s-quark sea contribution. In the
models below, using the results from [21] and allow-
ing for the largest possible values of C0

s,c,b,t, we have
|�s| <⇠ 0.04. Eq. (3) makes clear why it is difficult
to decouple the axion from the nucleons. For KSVZ
C0

u = C0
d = 0 and the model independent contribu-

tion survives. For DFSZ we see from Eq. (2) that
C0

u + C0
d = Nl/N with Nl the contribution to the

QCD anomaly of the first generation (light) quarks.
Hence, for generation blind charges C0

u + C0
d = 1/3

is an exact result.

The nucleophobic axion. We take as the defining
condition for the nucleophobic axion the (approxi-
mate) vanishing of the relations in Eqs. (3), (4). Re-
markably, since the axion-pion coupling is propor-
tional to the isospin breaking combination Cp � Cn

[22], nucleophobic axions are also pionphobic. We
start by studying Eq. (3). In the approximation
in which �s is neglected, Cp + Cn = 0 implies
C0

u + C0
d = Nl/N = 1. This can only be realized

in two ways: (i) either the contributions of the two
heavier generations cancel each other (N2 = �N3

and Nl = N1) or (ii) they vanish identically, in
which case it is convenient to assign Nl = N3 and,
hoping that no confusion will arise with the usual
generation ordering, require for the anomalies of the
heavier generations N1 = N2 = 0.1 Clearly both
cases require generation dependent PQ charges. A
generic matrix of charges for a LH or RH quark q
can be written as XQ = X0

q I +X8
q�8 +X3

q�3 where
I = diag(1, 1, 1) is the identity in generation space,
while �8 = diag(1, 1,�2) and �3 = diag(1,�1, 0)
are proportional to the corresponding SU(3) ma-
trices. In this Letter we are mainly interested in
a proof of existence for nucleophobic axions, so we
introduce some simplification: we assume just two
Higgs doublets H1,2 (with PQ charges X1,2 and hy-
percharge Y = �1/2), and we consider only PQ

1
We have found that this second case was already identified

in the not-well-known work in Ref. [23].

charge assignments that do not forbid any of the SM
Yukawa operators. Under these conditions, it can be
shown that two generations must have the same PQ
charges [24]. We can then drop the SU(2) break-
ing �3 term so that the matrix XQ = X0

q I +X8
q�8

respects a SU(2) symmetry acting on the genera-
tion indices {1, 2}, and we henceforth refer to such
a structure as 2 +1 . To study which Yukawa struc-
tures can enforce the condition N = Nl it is then suf-
ficient to consider just one of the generations in 2 to-
gether with the generation in 1 carrying index {3}.
The relevant Yukawa operators read:

q2u2H1, q3u3Ha, q2u3Hb, q3u2H1+a�b,

q2d2 ˜Hc, q3d3 ˜Hd, q2d3 ˜Hd+a�b, q3d2 ˜Hc�a+b, (5)

where ˜H = i�2H⇤, assigning H1 to the first term is
without loss of generality and, according to our as-
sumptions, all the Higgs sub-indices must take val-
ues in {1, 2}. It is easy to verify that in each line the
charges of the first three quark-bilinears determine
the fourth one, e.g. X(q3u2) = X(q2u2)+X(q3u3)�
X(q2u3), while the third term in the second line is
obtained by equating Xq3 � Xq2 as extracted from
the second and third terms of both lines. It is now
straightforward to classify all the possibilities that
yield Nl/N = 1. Denoting the Higgs ordering in the
two lines of Eq. (5) with their indices 2 {1, 2}, e.g.
(H1, H2, H1, H2)u ⇠ (1212)u we have respectively
for (i1,2) N1 = N2 = �N3 and (ii1,2) N1 = N2 = 0:

(i1) : (1212)u (2121)d; (i2) : (1221)u (2112)d ;

(ii1) : (1111)u (1221)d; (ii2) : (1221)u (1111)d . (6)

It is easy to verify that in (i1,2) 2Nl = 2N2 = Xu2R+

Xd2R�Xu2L�Xd2L = X2 �X1 with N3 = �N2, in
(ii1) 2Nl=2N3 = X2�X1 and in (ii2) 2Nl=2N3 =

�X2+X1 with, in both last cases, N1 = N2 = 0. Let
us now discuss how the second condition Cp�Cn ⇡ 0

can be realized. We denote by tan� = v2/v1 , the
ratio of the H1,2 VEVs, and we use henceforth the
shorthand notation s� = sin�, c� = cos�. The
ratio X1/X2 = � tan

2 � is fixed by the require-
ment that the PQ Goldston boson is orthogonal to
the Goldston eaten up by the Z-boson [8], and the
charge normalization is given in terms of the light
quark anomaly as X2 � X1 = ±2Nl. Here and be-
low the upper sign holds for (i1,2) and (ii1), and the
lower sign for (ii2). From Eq. (6) it follows that in all
cases C0

u �C0
d = � 1

2N (X1 +X2) = ±(s2� � c2�). The
second condition for nucleophobia C0

u �C0
d = 1/3 is

then realized for s2� = 2/3 in (i1,2) and (ii1), and for
s2� = 1/3 in (ii2). We learn that even under some re-
strictive assumptions, there are four different ways
to enforce nucleophobia. More possibilities would
become viable by allowing for PQ charges that for-
bid some Yukawa operator [24]. Note that while
Cp � Cn ⇡ 0 requires a specific choice tan� ⇡

p
2,

1/
p
2, Cp+Cn ⇡ 0 is enforced just by charge assign-

ments. For both values of tan� the top Yukawa cou-
pling remains perturbative up to the Planck scale,
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�
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�
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3
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C0

u + C0
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QCD anomaly of the first generation (light) quarks.
Hence, for generation blind charges C0
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1
We have found that this second case was already identified

in the not-well-known work in Ref. [23].
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1 Introduction

• The high-mass axion window ma 2 [10�2, 1] eV can be in principle tested at IAXO.
However, SN (axion-nucleon) and WD (axion-electron) bounds when taken at face value
(cf. Fig. 1) reduce the visibility at IAXO (which is mainly sensitive to the axion-photon
coupling) within benchmark DFSZ/KSVZ models. Hence, we ask the question whether
there exist minimal deformations of the latter models allowing for a cancellation of the
axion couplings to nucleons and electrons as well.

• Recently, there have been numerous astrophysical hints of anomalous energy loss in stars
at di↵erent evolutionary stages, which can be explained via the existence of sub-keV
axions/ALPs (see e.g. [1]). In particular, the best-fit point is dominated by a sizable gae
and a ga� compatible with zero (cf. Fig. 1 in [1]). However, since the typical axion decay
constant is required to be in the fa = 108 GeV ballpark (cf. Table. 2 in [1]), SN bounds
are relevant and make fa to increase by an order of magnitude. It looks like this is not a
serious issue from the �2

min

, however note (e.g. from Fig. 2 in [1]) that the best-fit point
is pushed on the boundary of perturbativity. In between us, the perturbativity range
on tan � is quite optimistic: it corresponds to yukawas of O(

p
4⇡) and for sure it leads

to Landau poles below the PQ scale. On the other hand, a nucleophobic axion (non-
necessarily electrophobic though) would drastically relax such a tension and definitely
provides a perfect candidate for the cooling anomalies.

• After inspecting the axion-nucleon coupling from a model-independent point of view, we
find that the minimal model in order to obtain a nucleophobic axion is a 2HDM, while
the simultaneous cancellation of the axion-electron coupling requires a 3HDM.

• We can probably formulate as a theorem that an unavoidable consequence of the nucleo-
phobic axion are flavour non-universal PQ charge assignments, which leads to interesting
signatures in flavour physics experiments. These are particularly important in the high-
mass axion window and require, in some cases, a further suppression from flavour rotation
matrix elements in order to pass the bounds.

• A final note on axion DM: the only possibility left in the high-mass range are topological
defects in the post-inflationary PQ breaking scenario with N

DW

> 1. This means, on
one hand, that the misalignment mechanism cannot contribute to the whole DM (thus
reducing the sensitivity of DM axion experiments) and, on the other hand, that the PQ
symmetry must be explicitly broken in order to lead to a fast decay of the DWs before
they dominate the energy density.

2 Model-independent approach to axion couplings

At energies below the electroweak scale the axion e↵ective Lagrangian (including general flavour
violating terms) can be written as [2]

La =
1

2
(@µa)

2 +
a

fa

↵s

8⇡
Ga

µ⌫G̃
a,µ⌫ +

1

4
a g0a��Fµ⌫F̃

µ⌫ +
@µa

2fa
f i�

µ(CV
ij + CA

ij�5)fj , (1)

3

e.g. RH down rotations become physical

• Low-energy flavour experiments 
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Belle-II

B Bounds on flavour-violating axion couplings

In order to compare with the experimental constraints, we use the parametrization

L =
@µa

fa
f i�

µ
⇥
CV

ij + CA
ij�5

⇤
fj , (65)

with CA,V
ij given in Eq.(52). The strongest constraints arise from flavor-violating decays into

(essentially massless) axions. We have (see [3, 4])
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where FK = 0.33 and FD+ = 0.67. With the experimental bounds at 90% CL from Refs. [5–7],
respectively

BR(K+ ! ⇡+ + inv) < 7.3 ⇥ 10�11 , (70)

BR(B ! K + inv) < 3.2 ⇥ 10�5 , (71)

BR(µ+ ! e+ + inv) < 2.6 ⇥ 10�6 , (72)

one finds the bounds
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Conclusions
• KSVZ and DFSZ are well-motivated minimal benchmarks, but… 

- axion couplings are UV dependent

- worth to think about alternatives when confronting exp. bounds and sensitivities 

• Astrophobic Axions (suppressed couplings to nucleons and electrons)

1. relax astro bounds on axion mass by ~ 1 order of magnitude 

2. improve visibility at IAXO

3. improve fit to stellar cooling anomalies  

4. can be complementarily tested in axion flavour exp. 
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Stellar cooling anomalies
• Hints of excessive cooling in WD+RGB+HB can be explained via an axion 

[Giannotti, Irastorza, Redondo, Ringwald, Saikawa 1708.02111]

1σ
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3σ WD+RGB+HB

ALPS II

IAXO
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Figure 1. Combined analysis of the hints from WD+RGB+HB stars in the gae � ga� plane. Also
shown are the projected sensitivities of the light-shining-through-walls experiment ALPS II [13] and
the helioscope IAXO [15].

combination of couplings. In fact, it includes also axion emission in nucleon bremsstrahlung
N+N ! N+N+a where N can be either a proton or a neutron and most of the simulations
were done with a very small neutron coupling, so that the e↵ect is mostly due to the proton
coupling.

Finally, the axion/ALP bremsstrahlung o↵ nucleons can shorten the prediction of the
neutrino pulse duration of core collapse supernovae. In fact, the neutrino observations from
SN1987A lead to a bound (see appendix B)

g2ap + g2an < 3.6⇥ 10�19 . (2.8)

We will consider this as a 1� hint that g2aN = 0 within the error 3.6 ⇥ 10�19. However, we
warn the reader that SN 1987A constraints are based on axion emissivities not completely
understood and on simulations that at the moment do not include all necessary physics and
therefore have systematic uncertainties themselves. Again, we will study axion models with
and without including this constraint.

3 Axion interpretation of stellar cooling anomalies

Let us start by reviewing the generic features of the axion. The basic building block of an
invisible axion model is a global U(1)

PQ

symmetry, which is broken at a high scale by the
vacuum expectation value h�2i = v2

PQ

/2 of a complex Standard Model (SM) singlet scalar
field �. In this notation, the axion field appears as the phase of this complex scalar � =
(v

PQ

/
p
2)eia/vPQ or as a linear combination of this and other Higgs phases. The associated

Noether current JPQ

µ is required to have a color anomaly and, although not required for
solving the strong CP problem, it may also have an electromagnetic anomaly:

@µJPQ
µ =

N↵s

8⇡
Ga

µ⌫G̃
aµ⌫ +

E↵

8⇡
Fµ⌫F̃

µ⌫ , (3.1)

– 5 –

- requires a sizeable axion-electron coupling in a region disfavoured by SN bound*

Here eHu = ✏H⇤
u, i, j = 1, 2, 3 are flavor indices and �ij , Yij , Gij are complex 3⇥ 3 matrices.

The interactions given by eq. (3.6) (DFSZ I) or eq. (3.7) (DFSZ II) are assumed to be
invariant under a U(1)

PQ

symmetry with symmetry breaking scale v
PQ

. At low energies, the
e↵ective Lagrangian is then given by eq. (2.1), with [45, 46]

fa =
v
PQ

6
, (3.8)

CDFSZ I

ae =
1

3
sin2 � , CDFSZ II

ae =
1

3
(1� sin2 �) , (3.9)

(3.10)

and [40]

CDFSZ I

a� =
8

3
� 1.92(4) , CDFSZ II

a� =
2

3
� 1.92(4) , (3.11)

CAp = �0.435 sin2 � + (�0.182± 0.025) ,

CAn = 0.414 sin2 � + (�0.16± 0.025) . (3.12)

Here, tan� ⌘ vu/vd, with v =
q
v2u + v2d = 246 GeV. It is theoretically constrained from

both ends by the requirement of perturbative unitarity of the Yukawa couplings,

0.28 < tan� < 140 . (3.13)

Here, the lower limit arises in all 2HDMs, while the upper limit is specific to the type-II and
type-IV 2HDMs [47].

The DFSZ models have only two parameters, fa and tan�, that we can extract from the
global fit of the WDLF, the period decrease of 4 pulsating WDs (R548, L 19-2 (113), L 19-2
(192), and PG 1351+489), the luminosity of the tip in the RGB of M5 and the R-parameter
in globular clusters, which we hereafter label as HB, see appendix A for specifics. The best
fit values are recorded in table 2 and the 1, 2, 3, 4� contours are shown in figure 2. Note
that we impose the constraint on perturbative unitarity on the best fit values but not on the
contours. The resulting regions can be understood as follows.

Model Global fit includes fa [108GeV] ma [meV] tan� �2

min

/d.o.f.

WD,RGB,HB 0.77 74 0.28 14.9/15
DFSZ I WD,RGB,HB,SN 11 5.3 140 16.3/16

WD,RGB,HB,SN,NS 9.9 5.8 140 19.2/17
WD,RGB,HB 1.2 46 2.7 14.9/15

DFSZ II WD,RGB,HB,SN 9.5 6.0 0.28 15.3/16
WD,RGB,HB,SN,NS 9.1 6.3 0.28 21.3/17

Table 2. Best fit parameters compatible with perturbative unitarity for DFSZ-type axion interpre-
tations of the cooling anomalies.

3We follow this approach in our figures 2 and 3, where we show the mass scale on the x-axis. The mass
there emerges solely from its relation with fa, Eq. (3.3). We remind, however, that the stellar hints are
calculated in the approximation of masseless axions, as explained in footnote 2.

– 8 –

 Nucleophobic axions should improve fit, 
    allowing for fully perturbative Yukawas 

*SN bound a factor ~4 weaker than PDG one ?  
[Chang, Essig, McDermott 1803.00993]
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DM in the heavy axion window
• Post-inflationary PQ breaking with NDW ≠1

Axion as a non-WIMP dark matter candidate Ken’ichi Saikawa

The detailed investigation of the parameter space showed that there exits a loophole if the

order of the operators (3.2) is N = 9 or 10 [18]. In such cases, the axion can explain the observed

dark matter abundance in higher mass ranges, 5.6×10−4 eV ! ma ! 1.3×10−1 eV (for NDW = 6),

if we allow a mild tuning of the symmetry breaking parameter g. Intriguingly, such higher mass

ranges are compatible with those preferred by stellar cooling anomaly observations [19].

4. Conclusions

The axion is a well-motivated hypothetical particle as it provides a solution to the strong CP

problem and can be a good candidate of non-WIMP dark matter. The prediction for the axion

dark matter strongly depends on the early history of the universe and hence the underlying particle

physics models. The mass ranges predicted in various cosmological scenarios are summarized in

Fig. 2. Recently, a lot of new experimental projects are proposed, which enables us to investigate

the properties of the axion in the relevant parameter ranges [see, e.g., Ref. [20]]. Discovery of the

axion in such future experimental searches would bring about a tremendous development not only

in dark matter physics but also in cosmology and fundamental physics.

pre-inf.

post-inf. (N = 1)

post-inf. (N = 6)

tuned
θi → 0

tuned
θi → πdominant / subdominant subdominant

overclosure
dominant

(uncertainty?) subdominant

overclosure dominant / subdominant

10 1013 1012 1011 1010 109 108 107

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1

!![GeV]

"![eV]

Figure 2: Predictions for the axion dark matter mass ma or the decay constant fa in the pre-inflationary PQ

symmetry breaking scenario (first line), the post-inflationary PQ symmetry breaking scenario with NDW = 1

(second line), and that with NDW = 6 (third line). The yellow regions correspond to the mass ranges in

which the axion can be the main constituent of dark matter. The gray regions are excluded since the relic

axion abundance exceeds the observed dark matter abundance. The gray hatched regions correspond to

the mass ranges in which more than 10% tuning of θi is required in order to explain the observed dark

matter abundance. Here we give a conservative estimate of uncertainty in the axion dark matter mass for the

models with NDW = 1, taking account of the difference between the results obtained from the conventional

simulation method [13, 14] and those obtained from the modified simulation method [17].
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- axion production from topological defects 

- requires explicit PQ breaking term

Heavy Axion Cosmology

If PQ broken after inflation need to take into 
account axion production from topological defects:

Need larger axion masses wrt pure misalignment

Need explicit PQ 
breaking term 

Kawasaki, Saikawa, Sekiguchi 
arXiv:1412.0789
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FIG. 7: Observational constraints on the axion decay constant Fa and the bias parameter Ξ in the model with NDW = 3
based on (a) the assumption of exact scaling and (b) that of deviation from scaling. The red solid line corresponds to the
bound obtained from the burst duration of SN 1987A [Eq. (4.10)], and the green area to the left side of this line is excluded.
The blue (cyan) solid line corresponds to the constraint of the overclosure of dark matter axions [Eq. (4.1)] with the coefficient
Cd estimated based on 10% (1%) criterion. The dotted lines represent uncertainties of Ωa,toth

2 induced by the numerical
parameters ϵ, ξ, ϵ̃a, A (or Aform), and Cd. Except for these uncertainties, the red region below the blue (or cyan) line is
excluded. The purple solid lines correspond to the NEDM bounds [Eq. (4.9)] for δ = 1, 10−4, and 10−8. The region above these
lines is also excluded. The shaded region corresponds to the parameters satisfying Eq. (4.13), and in this region the axion mass
is dominated by the bias term. The exclusion lines shown in these figures are obtained for g∗,1 = 80 and ΛQCD = 400MeV.
Furthermore, we use β′ = 58, ξ = 1.0 ± 0.5, and ϵ = 4.02 ± 0.70 to compute Ωa,stringh

2. For parameters required to estimate
Ωa,dech

2, we take ϵ̃a = 1.85 ± 0.06 (the result for NDW = 3 in Table VII), A = 1.10 ± 0.18 (the result for NDW = 3 and
N = 16384 in Table IV), Aform = 0.828± 0.032, and p = 0.926 (the result for NDW = 3 in Table V). The value for Cd is taken
from Table VI, such that Cd = 5.02± 0.44 (8.15± 0.67) for 10% (1%) criterion with the assumption of exact scaling [panel (a)]
and Cd = 7.16± 0.53 (10.8 ± 0.7) for 10% (1%) criterion with the assumption of deviation from scaling [panel (b)].
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FIG. 7: Observational constraints on the axion decay constant Fa and the bias parameter Ξ in the model with NDW = 3
based on (a) the assumption of exact scaling and (b) that of deviation from scaling. The red solid line corresponds to the
bound obtained from the burst duration of SN 1987A [Eq. (4.10)], and the green area to the left side of this line is excluded.
The blue (cyan) solid line corresponds to the constraint of the overclosure of dark matter axions [Eq. (4.1)] with the coefficient
Cd estimated based on 10% (1%) criterion. The dotted lines represent uncertainties of Ωa,toth

2 induced by the numerical
parameters ϵ, ξ, ϵ̃a, A (or Aform), and Cd. Except for these uncertainties, the red region below the blue (or cyan) line is
excluded. The purple solid lines correspond to the NEDM bounds [Eq. (4.9)] for δ = 1, 10−4, and 10−8. The region above these
lines is also excluded. The shaded region corresponds to the parameters satisfying Eq. (4.13), and in this region the axion mass
is dominated by the bias term. The exclusion lines shown in these figures are obtained for g∗,1 = 80 and ΛQCD = 400MeV.
Furthermore, we use β′ = 58, ξ = 1.0 ± 0.5, and ϵ = 4.02 ± 0.70 to compute Ωa,stringh

2. For parameters required to estimate
Ωa,dech

2, we take ϵ̃a = 1.85 ± 0.06 (the result for NDW = 3 in Table VII), A = 1.10 ± 0.18 (the result for NDW = 3 and
N = 16384 in Table IV), Aform = 0.828± 0.032, and p = 0.926 (the result for NDW = 3 in Table V). The value for Cd is taken
from Table VI, such that Cd = 5.02± 0.44 (8.15± 0.67) for 10% (1%) criterion with the assumption of exact scaling [panel (a)]
and Cd = 7.16± 0.53 (10.8 ± 0.7) for 10% (1%) criterion with the assumption of deviation from scaling [panel (b)].
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
photons [52, 53].
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put

 PQ charges carried by a vector-like quark Q = QL + QR  

 [original KSVZ model assumes Q ~ (3,1,0)]
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (39) anomaly coeff.
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (40)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (41)

E =
X

Q

(XL � XR) Q2

Q , (42)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (43)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (44)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (45)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:

VH�

= �µ2

�

|�|2 + �
�

|�|4 + �H�

|H|2|�|2 . (46)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
the newe quarks would be absolutely stability, a possibility which is preferable to avoid. For the few RQ

for which LQq 6= 0 is allowed, U(1)Q ⇥ U(1)B is further broken to U(1)B0 , a generalized baryon number
extended to the Q, which can then decay with unsuppressed rates. However, whether LQq is allowed at
the renormalizable level, does not depend solely on RQ: apparently it seems also to depend on the specific
PQ charges. For example, independently of RQ, the common assignment XL = �XR = 1

2

would forbid all
PQ invariant decay operators, e↵ectively protecting Q-baryon number. U(1)Q violating decays could then
occur only via PQ-violating e↵ective operators of dimension d > 4. Of course it is physically sensible to
expect that U(1)PQ and U(1)Q are both broken at least by Planck-scale e↵ects. This would generate PQ
violating contributions to the axion potential V d>4

�

as well as an e↵ective Lagrangian Ld>4

Qq . However, it is

well known that to preserve ✓ < 10�10, operators in V d>4

�

must be of dimension d � 11 [11–13]. Clearly, if
Ld>4

Qq had to respect the PQ symmetry to a similar level of accuracy, the Q’s would beheave as e↵ectively
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (42)

E =
X

Q

(XL � XR) Q2

Q , (43)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:

VH�

= �µ2

�

|�|2 + �
�

|�|4 + �H�

|H|2|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
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5

forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ
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Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.
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symmetry corresponding
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|H|2|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
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• Symmetry of the kinetic term 
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forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (40)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (42)

E =
X

Q

(XL � XR) Q2

Q , (43)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:

VH�

= �µ2

�

|�|2 + �
�

|�|4 + �H�

|H|2|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
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symmetry corresponding
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Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR
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TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
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forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:
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where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (42)

E =
X

Q

(XL � XR) Q2

Q , (43)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:

VH�

= �µ2
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|�|2 + �
�
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|H|2|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,
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QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:

VH�

= �µ2

�

|�|2 + �
�

|�|4 + �H�

|H|2|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,

4

ga�� =
ma

eV

2.0

1010 GeV

✓
Ec

Nc
� 1.92(4)

◆
(33)

R1

Q +R2

Q (34)

Ec

Nc
=

E
1

+ E
2

N
1

+ E
2

(35)

(3, 2, 1/6)� (3, 3,�4/3) (36)

Ec/Nc = 122/3 (37)

CQ 6= I (38)

Va � v
EW

(39)

U(1)
PQ

⇥ U(1)
Q

(40)

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical

5

forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (40)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (41)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (42)

E =
X

Q

(XL � XR) Q2

Q , (43)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,

T (3) = 1/2, T (6) = 5/2, T (8) = 3, T (15) = 10) and QQ is the U(1)
em

charge. Di↵erent RQ imply di↵erent
phenomenological consequences, and this can be used to identify preferred models. The scalar field � can
be parametrized as

�(x) =
1p
2
[⇢(x) + Va] e

ia(x)/Va , (44)

where a(x) is the axion field which would remain massless in the absence of explicit U(1)PQ breaking, while
⇢(x) acquires a mass m⇢ ⇠ Va with Va � (

p
2GF )�1/2 = 247GeV in the invisible axion models. The SM

quarks q = qL, dR, uR do not contribute to the QCD anomaly, and thus their PQ charges can be set to zero.
This allows to describe the SM Yukawa sector with a single Higgs field. The renormalizable Lagrangian for
a generic hadronic axion model can be written as:

La = L
SM

+ L
PQ

� VH�

+ LQq , (45)

where L
SM

is the SM Lagrangian,

L
PQ

= |@µ�|2 +Qi /DQ� (yQ QLQR�+H.c.) (46)

where Q = QL +QR and, from the last term, mQ = yQVa/
p
2. VH�

contains the new scalar couplings:

VH�

= �µ2

�

|�|2 + �
�

|�|4 + �H�

|H|2|�|2 . (47)

Finally, LQq contains possible renormalizable terms coupling QL,R to the SM quarks which can allow Q
decays [21]. Note, however, that SM gauge invariance allows LQq 6= 0 only for few specific RQ. For example,
the original KSVZ assignment RQ = (3, 1, 0) [17, 18] would forbid Q-decays to all orders.

PQ quality and heavy Q stability. The issue whether the Q are exactly stable, metastable, or decay
with safely short lifetimes, is of central importance in our study, so let us discuss it in some detail. The
gauge invariant kinetic term in L

PQ

possesses a U(1)3 ⌘ U(1)QL ⇥U(1)QR ⇥U(1)
�

symmetry corresponding
to independent rephasing of the QL,R and � fields. The PQ Yukawa term (yQ 6= 0) breaks U(1)3 to U(1)2.
One factor is the anomalous U(1)PQ, the other one is a non-anomalous U(1)Q, that is the Q-baryon number
of the new quarks [17], under which QL,R ! ei�QL,R and � ! �. If U(1)Q were an exact symmetry,

- if             U(1)Q is further broken and Q-decay is possible

4

ga�� =
ma

eV

2.0

1010 GeV

✓
Ec

Nc
� 1.92(4)

◆
(33)

R1

Q +R2

Q (34)

Ec

Nc
=

E
1

+ E
2

N
1

+ E
2

(35)

(3, 2, 1/6)� (3, 3,�4/3) (36)

Ec/Nc = 122/3 (37)

CQ 6= I (38)

Va � v
EW

(39)

U(1)
PQ

⇥ U(1)
Q

(40)

LQq 6= 0 (41)

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

QL 1/2 CQ IQ YQ XL

QR 1/2 CQ IQ YQ XR

� 0 1 1 0 1

TABLE I. Field content of the general KSVZ axion model. (C, I,Y) denote irreps of the SM gauge group nontrivial
under color (C 6= 1), but otherwise generic.

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).

- decay also possible via d>4 operators (e.g. Planck-induced)

stability depends on Q representations

[Ringwald, Saikawa, 1512.06436]

- U(1)Q is the Q-baryon number: if exact, Q would be stable

• Symmetry of the kinetic term 

Q stability

 L. Di Luzio (Pisa U.) - Nuove frontiere nella caccia all’ assione                                                        



44/3

Pheno preferred KSVZ fermions
7

R
Q

O
Qq

⇤2�loop

Landau

[GeV] E/N N
DW

(3, 1,�1/3) Q
L

d
R

9.3 · 1038(g
1

) 2/3 1

(3, 1, 2/3) Q
L

u
R

5.4 · 1034(g
1

) 8/3 1

(3, 2, 1/6) Q
R

q
L

6.5 · 1039(g
1

) 5/3 2

(3, 2,�5/6) Q
L

d
R

H† 4.3 · 1027(g
1

) 17/3 2

(3, 2, 7/6) Q
L

u
R

H 5.6 · 1022(g
1

) 29/3 2

(3, 3,�1/3) Q
R

q
L

H† 5.1 · 1030(g
2

) 14/3 3

(3, 3, 2/3) Q
R

q
L

H 6.6 · 1027(g
2

) 20/3 3

(3, 3,�4/3) Q
L

d
R

H†2 3.5 · 1018(g
1

) 44/3 3

(6, 1,�1/3) Q
L

�
µ⌫

d
R

Gµ⌫ 2.3 · 1037(g
1

) 4/15 5

(6, 1, 2/3) Q
L

�
µ⌫

u
R

Gµ⌫ 5.1 · 1030(g
1

) 16/15 5

(6, 2, 1/6) Q
R

�
µ⌫

q
L

Gµ⌫ 7.3 · 1038(g
1

) 2/3 10

(8, 1,�1) Q
L

�
µ⌫

e
R

Gµ⌫ 7.6 · 1022(g
1

) 8/3 6

(8, 2,�1/2) Q
R

�
µ⌫

`
L

Gµ⌫ 6.7 · 1027(g
1

) 4/3 12

(15, 1,�1/3) Q
L

�
µ⌫

d
R

Gµ⌫ 8.3 · 1021(g
3

) 1/6 20

(15, 1, 2/3) Q
L

�
µ⌫

u
R

Gµ⌫ 7.6 · 1021(g
3

) 2/3 20

TABLE II. R
Q

irreps which allow for renormalizable Q-decay operators (first seven rows above the bold horizontal
line) or d = 5 ones (next eight rows below the bold horizontal line), and leading to LPs above, or within one order of
magnitude below, the Planck scale. The second column list a sample operator O

Qq

which can be responsible for the
decay of Q, while in the third one we report the value of the LP estimated at two loops by setting the threshold of
the vectorlike quarks at 5 · 1011 GeV (the gauge coupling which triggers the Landau pole is specified in parenthesis).
The next column gives the value of the E/N term contributing to the axion-photon coupling (cf. Eq. (22)), and the
last one is the DW number (cf. Eq. (??)).

massless nf final states, the phase space factor can be integrated analytically, thus yielding (see e.g. [? ])

�NDA =
1

4(4⇡)2nf�3(nf � 1)!(nf � 2)!

m2d�7
Q

M
2(d�4)
Planck

, (17)

where we neglected the possibility of scalar field condensations in the e↵ective operator.
Since Q-decay operators of d = 5, 6, 7 will at least involve nf = 2, 3, 4 particles in the final state, we have

⌧NDA
d=5, nf=2 = 3.9 · 10�20 s

✓
5 · 1011 GeV

mQ

◆3

, (18)

⌧NDA
d=6, nf=3 = 7.4 · 10�3 s

✓
5 · 1011 GeV

mQ

◆5

, (19)

⌧NDA
d=7, nf=4 = 4.2 · 1015 s

✓
5 · 1011 GeV

mQ

◆7

. (20)

In order to be completely safe from a cosmological point of view the decay must happen before the time of
BBN, namely ⇠ 0.01 s [? ]. This is always the case for d = 5 operators if mQ & 106 GeV. On the other
hand, if the decay happens via d = 6 operators a much higher mass scale mQ & 1011÷12 GeV is needed. In
the post-inflationary PQ symmetry breaking scenario this is in tension with the bounds from axion DM via
the misalignment mechanism, leading to fa . 5 · 1011 GeV (see Refs. [? ? ] for some recent Lattice QCD
analyses). Finally, operators of d � 7 require an even higher mQ in the ballpark of the GUT or Planck
scale, which is clearly in the cosmological dangerous region.

Landau Poles. The presence of large matter multiplets drives the gauge couplings of the SM towards a
nonperturbative regime, eventually leading to Landau poles (LPs). We require the KSVZ axion model to
be a perturbatively calculable and UV complete framework up to the Planck scale, and hence reject those
irreps which lead to LPs below the Planck scale. To be conservative, and to retain the largest number of
RQ, we set the threshold of the heavy quark at mQ = 5 · 1011 GeV (at the boundary of compatibility with
post-inflationary axion-DM limits) and also keep those irreps with a LP within an order of magnitude below
the Planck scale. In fact, gravitational corrections on the running of the gauge couplings, that are under

7

FIG. 1. Axion contribution to the cosmological energy density as a function of mQ. The broken lines correspond
to free Q annihilation for color triplets (dotted) and octets (dashed). The solid line to annihilation via bound state
formation. The horizontal and vertical lines ⌦Q = ⌦DM and mQ = 1TeV limit the allowed region.

some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g

1

, g
2

, g
3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·
F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (25) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(38)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for Rs

Q =
(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q = (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
preferred hadronic axion models fall within the band delimited by 5/3  E/N  44/3, as depicted in Fig. 2.
In the figure we have drawn with dashed lines the boundary of the usual axion window and, to compare
theoretical predictions with the experimental situation, we have also plotted the current exclusion bounds
and projected sensitivities.

VI. More RQ and axion-photon decoupling. Let us now study to which extent the previous results
can be changed by the presence of more RQ’s. It would be quite interesting if, for example, ga�� could get
enhanced. However, we can easily see that, as long as the sign of �X = XL � XR is the same for all RQ’s,

3

✓
0

= O(1) (17)

fa � HI (18)

fa ⌧ HI (19)

fa � 1012 GeV (20)

✓
0

⌧ 1 (21)

⌦
✓2
0

↵
=

1

2⇡

Z ⇡

�⇡

✓2d✓ =
⇡2

3
(22)

⌧Q <⇠ 10�2 s (23)

MP = 1.22 · 1019 GeV (24)

E

N
=

P
Q (XL � XR) Q2

QP
Q (XL � XR) T (CQ) (25)

E

N
=

P
Q Q2

QP
Q T (CQ) (26)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical

• Q short lived + no Landau poles < Planck
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by eq. (44). Finally, even in case ⌦Q is eventually close to the estimate eq. (44), the relative concentration

of Q-hadrons nQ/nb ⇠ 10�8 (mQ/TeV)1/2 would still be quite large, and if the Q’s could accumulate with
similar concentrations within the galactic disk, existing limits from searches of anomalously heavy isotopes
in terrestrial, lunar, and meteoritic materials [41] would be able to exclude them for most of the allowed
range of masses. Many other arguments have been put forth disfavoring the possibility of heavy stable Q’s:
their capture in neutron stars would form black holes on a time scale of a few years [42] and, more generically,
they could endanger stellar stability [43] (? check this ref.), their annihilation in the Earth interior would
result in an anomalously large heat flow [44], etc.

IV. Selection criteria. All in all, although no uncircumventable argument seems to exist forbidding
completely heavy strongly interacting relics, the first discriminating criterium we adopt is that: (i) Models
that allow for su�ciently short lifetimes ⌧Q <⇠ 10�2 s are phenomenologically preferred with respect to models
containing long lived or cosmologically stable Q’s. All RQ allowing for decays via renormalizable operators
satisfy this requirement. Decays can also occur via operators of higher dimensions. To avoid introducing
(unnecessary) new scales, we assume that the cuto↵ scale is mP , and we write Od>4

Qq = m4�d
P Pd(Q,'n)

where Pd is a d-dimensional Lorentz and gauge invariant monomial linear in Q and containing n SM fields
'. For d = 5, 6, 7 the final states always contain n � d � 3 particles. Taking conservatively n = d � 3 we
obtain:

�d <⇠
⇡gfmQ

(d� 4)!(d� 5)!

 
m2

Q

16⇡2m2

P

!d�4

, (45)

where gf accounts for final states degrees of freedom, and we have integrated analytically the n-body phase
space neglecting ' masses and assuming momentum independent matrix elements (see e.g. [45]). Requiring

mQ  fa we obtain respectively for d = 5, 6, 7, ⌧ (d)Q
>⇠
�
4 · 10�20, 7 · 10�3, 4 · 1015� ⇥ (fa/mQ)2d�7 s. For

d = 5, as long as mQ >⇠ 800TeV decays occur with safe lifetimes ⌧
(5)

Q
<⇠ 10�2 s. For d = 6, even for the

largest values mQ ⇠ fa decays occur dangerously close to BBN [46]. Operators of d = 7 and higher are
always excluded. The RQ selected by this first criterium are the first seven listed in Table II which allow
for LQq 6= 0, plus other thirteen which allow for d = 5 decay operators. Some of these representations
are, however, rather large, and could induce Landau poles (LP) in the SM gauge couplings g

1

, g
2

, g
3

at
some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g

1

, g
2

, g
3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·
F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (33) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(46)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for Rs

Q =
(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q = (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
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by eq. (44). Finally, even in case ⌦Q is eventually close to the estimate eq. (44), the relative concentration

of Q-hadrons nQ/nb ⇠ 10�8 (mQ/TeV)1/2 would still be quite large, and if the Q’s could accumulate with
similar concentrations within the galactic disk, existing limits from searches of anomalously heavy isotopes
in terrestrial, lunar, and meteoritic materials [41] would be able to exclude them for most of the allowed
range of masses. Many other arguments have been put forth disfavoring the possibility of heavy stable Q’s:
their capture in neutron stars would form black holes on a time scale of a few years [42] and, more generically,
they could endanger stellar stability [43] (? check this ref.), their annihilation in the Earth interior would
result in an anomalously large heat flow [44], etc.

IV. Selection criteria. All in all, although no uncircumventable argument seems to exist forbidding
completely heavy strongly interacting relics, the first discriminating criterium we adopt is that: (i) Models
that allow for su�ciently short lifetimes ⌧Q <⇠ 10�2 s are phenomenologically preferred with respect to models
containing long lived or cosmologically stable Q’s. All RQ allowing for decays via renormalizable operators
satisfy this requirement. Decays can also occur via operators of higher dimensions. To avoid introducing
(unnecessary) new scales, we assume that the cuto↵ scale is mP , and we write Od>4

Qq = m4�d
P Pd(Q,'n)

where Pd is a d-dimensional Lorentz and gauge invariant monomial linear in Q and containing n SM fields
'. For d = 5, 6, 7 the final states always contain n � d � 3 particles. Taking conservatively n = d � 3 we
obtain:

�d <⇠
⇡gfmQ

(d� 4)!(d� 5)!

 
m2

Q

16⇡2m2

P

!d�4

, (45)

where gf accounts for final states degrees of freedom, and we have integrated analytically the n-body phase
space neglecting ' masses and assuming momentum independent matrix elements (see e.g. [45]). Requiring

mQ  fa we obtain respectively for d = 5, 6, 7, ⌧ (d)Q
>⇠
�
4 · 10�20, 7 · 10�3, 4 · 1015� ⇥ (fa/mQ)2d�7 s. For

d = 5, as long as mQ >⇠ 800TeV decays occur with safe lifetimes ⌧
(5)

Q
<⇠ 10�2 s. For d = 6, even for the

largest values mQ ⇠ fa decays occur dangerously close to BBN [46]. Operators of d = 7 and higher are
always excluded. The RQ selected by this first criterium are the first seven listed in Table II which allow
for LQq 6= 0, plus other thirteen which allow for d = 5 decay operators. Some of these representations
are, however, rather large, and could induce Landau poles (LP) in the SM gauge couplings g

1

, g
2

, g
3

at
some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g

1

, g
2

, g
3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·
F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (33) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(46)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for Rs

Q =
(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q = (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
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R
Q

O
Qq

⇤2�loop

Landau

[GeV] E/N N
DW

(3, 1,�1/3) Q
L

d
R

9.3 · 1038(g
1

) 2/3 1

(3, 1, 2/3) Q
L

u
R

5.4 · 1034(g
1

) 8/3 1

(3, 2, 1/6) Q
R

q
L

6.5 · 1039(g
1

) 5/3 2

(3, 2,�5/6) Q
L

d
R

H† 4.3 · 1027(g
1

) 17/3 2

(3, 2, 7/6) Q
L

u
R

H 5.6 · 1022(g
1

) 29/3 2

(3, 3,�1/3) Q
R

q
L

H† 5.1 · 1030(g
2

) 14/3 3

(3, 3, 2/3) Q
R

q
L

H 6.6 · 1027(g
2

) 20/3 3

(3, 3,�4/3) Q
L

d
R

H†2 3.5 · 1018(g
1

) 44/3 3

(6, 1,�1/3) Q
L

�
µ⌫

d
R

Gµ⌫ 2.3 · 1037(g
1

) 4/15 5

(6, 1, 2/3) Q
L

�
µ⌫

u
R

Gµ⌫ 5.1 · 1030(g
1

) 16/15 5

(6, 2, 1/6) Q
R

�
µ⌫

q
L

Gµ⌫ 7.3 · 1038(g
1

) 2/3 10

(8, 1,�1) Q
L

�
µ⌫

e
R

Gµ⌫ 7.6 · 1022(g
1

) 8/3 6

(8, 2,�1/2) Q
R

�
µ⌫

`
L

Gµ⌫ 6.7 · 1027(g
1

) 4/3 12

(15, 1,�1/3) Q
L

�
µ⌫

d
R

Gµ⌫ 8.3 · 1021(g
3

) 1/6 20

(15, 1, 2/3) Q
L

�
µ⌫

u
R

Gµ⌫ 7.6 · 1021(g
3

) 2/3 20

TABLE II. R
Q

irreps which allow for renormalizable Q-decay operators (first seven rows above the bold horizontal
line) or d = 5 ones (next eight rows below the bold horizontal line), and leading to LPs above, or within one order of
magnitude below, the Planck scale. The second column list a sample operator O

Qq

which can be responsible for the
decay of Q, while in the third one we report the value of the LP estimated at two loops by setting the threshold of
the vectorlike quarks at 5 · 1011 GeV (the gauge coupling which triggers the Landau pole is specified in parenthesis).
The next column gives the value of the E/N term contributing to the axion-photon coupling (cf. Eq. (22)), and the
last one is the DW number (cf. Eq. (??)).

massless nf final states, the phase space factor can be integrated analytically, thus yielding (see e.g. [? ])

�NDA =
1

4(4⇡)2nf�3(nf � 1)!(nf � 2)!

m2d�7
Q

M
2(d�4)
Planck

, (17)

where we neglected the possibility of scalar field condensations in the e↵ective operator.
Since Q-decay operators of d = 5, 6, 7 will at least involve nf = 2, 3, 4 particles in the final state, we have

⌧NDA
d=5, nf=2 = 3.9 · 10�20 s

✓
5 · 1011 GeV

mQ

◆3

, (18)

⌧NDA
d=6, nf=3 = 7.4 · 10�3 s

✓
5 · 1011 GeV

mQ

◆5

, (19)

⌧NDA
d=7, nf=4 = 4.2 · 1015 s

✓
5 · 1011 GeV

mQ

◆7

. (20)

In order to be completely safe from a cosmological point of view the decay must happen before the time of
BBN, namely ⇠ 0.01 s [? ]. This is always the case for d = 5 operators if mQ & 106 GeV. On the other
hand, if the decay happens via d = 6 operators a much higher mass scale mQ & 1011÷12 GeV is needed. In
the post-inflationary PQ symmetry breaking scenario this is in tension with the bounds from axion DM via
the misalignment mechanism, leading to fa . 5 · 1011 GeV (see Refs. [? ? ] for some recent Lattice QCD
analyses). Finally, operators of d � 7 require an even higher mQ in the ballpark of the GUT or Planck
scale, which is clearly in the cosmological dangerous region.

Landau Poles. The presence of large matter multiplets drives the gauge couplings of the SM towards a
nonperturbative regime, eventually leading to Landau poles (LPs). We require the KSVZ axion model to
be a perturbatively calculable and UV complete framework up to the Planck scale, and hence reject those
irreps which lead to LPs below the Planck scale. To be conservative, and to retain the largest number of
RQ, we set the threshold of the heavy quark at mQ = 5 · 1011 GeV (at the boundary of compatibility with
post-inflationary axion-DM limits) and also keep those irreps with a LP within an order of magnitude below
the Planck scale. In fact, gravitational corrections on the running of the gauge couplings, that are under
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FIG. 1. Axion contribution to the cosmological energy density as a function of mQ. The broken lines correspond
to free Q annihilation for color triplets (dotted) and octets (dashed). The solid line to annihilation via bound state
formation. The horizontal and vertical lines ⌦Q = ⌦DM and mQ = 1TeV limit the allowed region.

some uncomfortably low energy scale ⇤LP < mP . Quantum gravity corrections to the running of the
gauge couplings can become relevant at scales approaching mP , and their e↵ect is to delay the emergence
of LP [47]. Then, to be conservative, we choose a value of ⇤LP for which gravitational corrections can
presumably be neglected. Then, our second criterium is that: (ii) RQ’s which do not induce LP in g

1

, g
2

, g
3

below ⇤LP ⇠ 1018 GeV are phenomenologically preferred. We apply this criterium employing two-loop beta
functions [45] and setting conservatively the threshold for RQ at mQ = 5 · 1011 GeV. The RQ satisfying
both our criteria are listed in Table II. The gauge coupling and the energy scale where the first LP occurs
are given in the third column.
Other features can render the choice of some RQ more appealing than others. For example if NDW = 1

problems with cosmological domain walls (DW) are avoided [48], and some RQ could improve gauge coupling
unification [49]. We prefer not to consider these as crucial discriminating criteria, since solutions to the DW
problem exist (see e.g. [50]), while improved unification might simply be an accident because of the many
RQ we consider. Nevertheless, we have analyzed both these issues: the values of NDW are given in the
last column in Table II, while only RQ = (3, 2, 1/6) in the third line improves considerably gauge coupling
unification (this has been also remarked in [49]).

V. Axion coupling to photons. From the experimental point of view, the most promising way to unveil
the axion is via its interaction with photons, which is described by the e↵ective term La�� = �(1/4)ga��aF ·
F̃ , where the coupling is given in terms of the anomaly coe�cients in eq. (25) by [14]:

ga�� =
ma

eV

2.0

1010 GeV

✓
E

N
� 1.92(4)

◆
(38)

where the uncertainty comes from QCD corrections evaluated at NLO [51]. The values of E/N for our
preferred RQ are given in the last column of Table II. The corresponding couplings are given in Fig. 2 by
the set of oblique dotted lines, which are plotted only at small ma values to give an idea of the “density
of preferred hadronic axion models”. All in all, we find that the strongest coupling is obtained for Rs

Q =
(3, 3,�4/3) that gives Es/Ns � 1.92 ⇠ 12.75, almost twice the usually adopted value of 7.0 [33], while the
weakest coupling is obtained for Rw

Q = (3, 2, 1/6) for which Ew/Nw � 1.92 ⇠ �0.25 is about 3.5 times larger
than the usual lower value of 0.07. Then, if a single RQ is present, according to our two selection criteria all
preferred hadronic axion models fall within the band delimited by 5/3  E/N  44/3, as depicted in Fig. 2.
In the figure we have drawn with dashed lines the boundary of the usual axion window and, to compare
theoretical predictions with the experimental situation, we have also plotted the current exclusion bounds
and projected sensitivities.

VI. More RQ and axion-photon decoupling. Let us now study to which extent the previous results
can be changed by the presence of more RQ’s. It would be quite interesting if, for example, ga�� could get
enhanced. However, we can easily see that, as long as the sign of �X = XL � XR is the same for all RQ’s,

3

✓
0

= O(1) (17)

fa � HI (18)

fa ⌧ HI (19)

fa � 1012 GeV (20)

✓
0

⌧ 1 (21)

⌦
✓2
0

↵
=

1

2⇡

Z ⇡

�⇡

✓2d✓ =
⇡2

3
(22)

⌧Q <⇠ 10�2 s (23)

MP = 1.22 · 1019 GeV (24)

E

N
=

P
Q (XL � XR) Q2

QP
Q (XL � XR) T (CQ) (25)

E

N
=

P
Q Q2

QP
Q T (CQ) (26)

I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical

• Q short lived + no Landau poles < Planck

Pheno preferred KSVZ fermions
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More Q’s
• Combined anomaly factor

• Strongest coupling (compatible with LP criterium) 

• Complete decoupling within theoretical error possible as well: 
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
photons [52, 53].
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a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21). In all these cases the axion could be only detected via its coupling to
nucleons, providing additional motivations for axion searches which do not rely on the axion coupling to
photons [52, 53].
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FIG. 2. The ga��/ma window for preferred axion models. The lines E/N = 44/3 and 5/3 encompass models with
a single RQ in Table II. The region below the line E/N = 122/3 allows for two RQ’s. The yellow stripe delimited
by dashed lines reproduces the usual window |E/N � 1.92| 2 [0.07, 7] [33]. Current (projected) exclusion bounds
are delimited by solid (dashed) lines. The dark (light) orange band encompasses cosmologically interesting models
yielding ⌦a/⌦DM = 1 (> 0.01).

Since by construction the anomaly coe�cients of any RQ in our preferred set satisfy E/N  Es/Ns, the
factor in parenthesis is never larger than one implying Ec/Nc < Es/Ns. This is not so, however, if we
allow for opposite signs in the PQ charge di↵erences: �X = ��X s. In this case E/Es and N/Ns become
negative and ga�� can get enhanced. The largest enhancement attainable with two RQ’s is obtained with
Rs

Q � Rw
Q. This still respects the LP selection criterium and yields Ec/Nc = 122/3, corresponding in

Fig. 2 to the uppermost oblique line. Unfortunately, more RQ’s can also weaken ga�� below the lower
limit in Fig. 2, and even yield complete axion-photon decoupling (within theoretical errors), a possibility
that requires an ad hoc choice of RQ’s, but no numerical fine tuning. With two RQ’s there are three such
cases: (3, 3,�1/3) � (6, 1,�1/3); (6, 1, 2/3) � (8, 1,�1) and (3, 2,�5/6) � (8, 2,�1/2) giving respectively
Ec/Nc = (23/12, 64/33, 41/21) ⇡ (1.92, 1.94, 1.95). In all these cases the axion could be only detected via
its coupling to nucleons, providing additional motivations for axion searches which do not rely on the axion
coupling to photons [52, 53].
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I. Introduction. In spite of its indisputable phenomenological success, the standard model (SM) remains
unsatisfactory as a theoretical construction: it does not explain unquestionable experimental facts like
dark matter (DM), neutrino masses, and the cosmological baryon asymmetry, and it contains fundamental
parameters with highly unnatural values, like the coe�cient µ2 of the quadratic Higgs potential term,
the Yukawa couplings of the first family fermions he,u,d ⇠ 10�6 � 10�5 and the strong CP violating angle
✓ < 10�10. This last quantity is somewhat special: its value is stable with respect to higher order corrections
(unlike µ2) and (unlike he,u,d) it evades explanations based on environmental selection [1]. Thus, seeking
explanations for the smallness of ✓ independently of other “small values” problems is theoretically motivated.
Di↵erently from most of the other SM problems, which can often be addressed with a large variety of
mechanisms, basically only three types of solutions to the strong CP problem exist. The simplest possibility,
a massless up-quark, is now ruled out [2, 3]. The so-called Nelson-Barr (NB) type models [4, 5] either require
a high degree of fine tuning, often comparable to setting ✓ <⇠ 10�10 by hand, or additional rather elaborated
theoretical structures [6]. The Peccei-Quinn (PQ) solution [7–10] arguably stands on better theoretical
grounds, although it remains a challenge explaining through which mechanism the global U(1)PQ symmetry,
on which the solution relies (and that presumably arises as an accident) remains protected from explicit
breaking to the required level of accuracy [11–13].
Setting aside theoretical considerations, the issue if the PQ solution is the correct one could be set

experimentally by detecting the axion (in contrast, no similar unambiguous signature exist for NB models).
In order to focus axion searches, it is then very important to identify as well as possible the region of
parameter space where realistic axion models live. The vast majority of axion search techniques are sensitive
to the axion-photon coupling ga�� , which is linearly proportional to the inverse of the axion decay constant
fa. Since the axion mass ma has the same dependence, experimental exclusion limits, as well as theoretical
predictions for specific models, can be conveniently presented in the ma-ga�� plane. The commonly adopted
“axion band” corresponds roughly to ga�� ⇠ ma↵/(2⇡f⇡m⇡) ⇠ 10�10 (ma/eV)GeV�1 with a somewhat
arbitrary width, chosen to include representative models like those in Refs. [14–16]. In this Letter we put
forth a definition of a phenomenologically preferred axion window as the region encompassing hadronic axion
models which i) do not contain cosmologically dangerous strongly interacting relics; ii) do not induce Landau
poles below a scale ⇤LP close to the Planck scale mP . While all the cases we consider belong to the KSVZ
type of models [17, 18], the resulting window encompasses also the DFSZ axion [19, 20] and many of its
variants [15].

II. Hadronic axion models. The basic ingredient of any renormalizable axion model is a global U(1)PQ

symmetry. The associated Nöether current must have a color anomaly and, although not required for solving
the strong CP problem, in general it has also an electromagnetic anomaly:

@µJPQ
µ =

N↵s

4⇡
G · G̃+

E↵

4⇡
F · F̃ , (34)

where G, F are the color and electromagnetic field strength tensors, G̃, F̃ their duals, and N and E are the
color and electromagnetic anomaly coe�cients. In a generic axion model of KSVZ type [17, 18] the anomaly
is induced by pairs of heavy fermions QL, QR which must transform non-trivially under SU(3) and chirally
under U(1)PQ. Their mass arises from a Yukawa interaction with a SM singlet scalar field � which develops
a PQ breaking VEV, so that their PQ charges XL,R ⌘ X (QL,R), normalized to X (�) = 1, must satisfy

|XL � XR| = 1 . (35)

We denote the (vectorlike) representations of the SM gauge group GSM=SU(3)C⇥SU(2)I⇥U(1)Y to which
we assign the Q as RQ=(CQ, IQ,YQ) so that

N =
X

Q

(XL � XR) T (CQ) , (36)

E =
X

Q

(XL � XR) Q2

Q , (37)

where the sum over is over irreducible color representations (we allow for the simultaneous presence of more
RQ). The color index is defined by TrT a

QT
b
Q = T (CQ)�ab with TQ the generators in CQ (in particular,
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about photophobia: “such a cancellation is immoral, but not unnatural” [D. B. Kaplan, (1985)]
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• Blue line corresponds to a 2%
   ‘tuning in theory space’ 
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Renormalizable UV Completion of SM Predicting Axion  

>  A singlet complex scalar field     featuring 
a global            symmetry is added to SM  

>  Symmetry is broken by vev 

§  Excitation of modulus:  

§  Excitation of angle: NGB 

>  Quarks (SM or extra) carry PQ charges                                           
such that            is anomalously broken 
due to gluonic triangle anomaly 

       

  
 
 
 
 
 

    

U(1)PQ

U(1)PQ

global

gauge

gauge
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• Red line set by perturbativity [KSVZ]         
(going above requires exotic constructions) 



• Messages for exp.’s : 

1.  The QCD axion might already be 
in the reach of your experiment ! 

2.  Don’t stop at E/N = 0 
(go deeper if you can)
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• Blue line corresponds to a 2%
   ‘tuning in theory space’ 

• Red line set by perturbativity [KSVZ]         
(going above requires exotic constructions) 


