IFAE 2019 – Incontri di Fisica delle Alte Energie

Search for four-top-quark production in the singlelepton and opposite-sign dilepton final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

JACOPO MAGRO

Università di Udine/INFN Trieste - gruppo collegato di Udine

Istituto Nazionale di Fisica Nucleare

Indice

- Introduzione
- Selezione e classificazione degli eventi
- Stima dei fondi
- Incertezze
- Risultati

4 top - produzione

- Phys. Rev. D 99, 052009 (2019)
- Ricerca della produzione di quattro quark top usando dati di collisioni *pp* a \sqrt{s} =13 TeV raccolti dall'esperimento ATLAS tra il 2015 e il 2016 (\mathcal{L} = 36.1 fb⁻¹)
- Processo dominante di produzione: gluon-gluon fusion (94%)
- Processo secondario di produzione: *annichilazione quarkantiquark* (6%)
- Processo estremamente raro: $\sigma_{t\bar{t}t\bar{t}}^{SM} \approx 9.2$ fb calcolato al NLO in QCD^[a]
- Sensibile a fisica oltre il Modello Standard

[a] Alwall, J., Frederix, R., Frixione, S. et al. J. High Energ. Phys. (2014) 2014: 79. https://doi.org/10.1007/JHEP07(2014)079

4 top - decadimento

Selezione degli eventi

Mass-tagged reclustered jet (RCLR jet):

- Jet con $p_T > 25$ GeV che passano tutti i criteri di selezione
- Reclustering con un parametro radiale di 1.0
- $p_T > 200 \text{ GeV}$
- $|\eta| < 2.0$
- Massa > 100 GeV

Pre-selection requirements				
Requirement	Single-lepton	Dilepton		
Trigger	Single-lepton triggers			
Leptons	1 isolated	2 isolated, opposite-sign		
Jets	≥5 jets	≥4 jets		
<i>b</i> -tagged jets	$\geq 2 b$ -tagged jets			
Other	$E_{\rm T}^{\rm miss} > 20 { m GeV}$	$m_{\ell\ell} > 50 \text{ GeV}$		
	$E_{\rm T}^{\rm miss} + m_{\rm T}^{\rm W} > 60 \text{ GeV}$	$ m_{\ell\ell} - 91 > 8 \text{ GeV}$		

Jet:

- Algoritmo anti-
k $_{\rm t}$ con un parametro radiale di 0.4
- $p_T > 25 \text{ GeV}$
- $|\eta| < 2.5$
- Criteri per eliminare i jet non provenienti dalla collisione
- Overlap removal con i leptoni

b-tag jet:

• Algoritmo di *b-tagging* (efficienza del 77%)

Classificazione degli eventi

Gli eventi preselezionati sono classificati in diverse regioni a seconda della molteplicità dei jet.

Fondi

I principali processi di fondo sono i seguenti:

- $t\bar{t}$ + jet \implies stimato con un metodo *data-driven* e con una simulazione MC
- Produzione di top singolo
- W/Z + jet
- Produzione di dibosoni
- $t\overline{t}$ + V e $t\overline{t}$ + H

- Valutati con una simulazione MC

• Leptoni *fake* e *non-prompt* => stimati con un metodo *data-driven*

Variabili discriminanti segnale-fondo

Variabili discriminanti segnale-fondo

Stima del fondo $t\bar{t} + jet$

Metodo $t\bar{t}$ Tag Rate Function (TRF_{tt}):

- La probabilità di identificare un jet come da quark b è indipendente dal numero di jet addizionali
- Estrarre le efficienze di *b-tag* ε_j dai dati con un basso numero di jet
- Ripesare i dati nelle regioni con 2 b-jet
- Predire la componente dovuta al processo $t\overline{t}$ + jet nelle regioni con un maggior numero di b-jet
- Questi passi sono applicati anche ad eventi simulati per derivare i fattori di correzione (inferiori al 20%).

Incertezze

Incertezze sistematiche:

- Modellizzazione dei fondi (in particolare del processo $t\overline{t} + jet$)
- Metodo $\text{TRF}_{t\bar{t}}$
- Jet (scala di energia/risoluzione, scala di massa e JVT)
- Efficienza dell'identificazione del sapore
- Leptoni (efficienze del trigger/ricostruzione/ identificazione/isolamento, risoluzione e scala dei momenti)
- Luminosità integrata

Incertezze statistiche:

- Stime *data-driven* (limitato numero di dati nelle regioni sorgente)
- Fattori di correzione MC (limitato numero di eventi simulati)

Uncertainty source	$\pm \Delta \mu$	
$t\bar{t}$ +jets modeling	+1.2	-0.96
Background-model statistical uncertainty	+0.91	-0.85
Jet energy scale and resolution, jet mass	+0.38	-0.16
Other background modeling	+0.26	-0.20
<i>b</i> -tagging efficiency and mis-tag rates	+0.33	-0.10
JVT, pileup modeling	+0.18	-0.073
$t\bar{t} + H/V$ modeling	+0.053	-0.055
Luminosity	+0.050	-0.026
Total systematic uncertainty	+1.6	-1.4
Total statistical uncertainty	+1.1	-1.0
Total uncertainty	+1.9	-1.7

Risultati

• Fit eseguito su H^{had} simultanemente nelle 20 regioni di segnale

0

H^{had}_T [GeV]

0

 $H_{\rm T}^{\rm had}$ [GeV]

0

 H_{T}^{had} [GeV]

0

 H_{T}^{had} [GeV]

Risultati

- I dati sono in **buon accordo** con la previsione del Modello Standard all'interno delle bande di incertezza, ottenendo un limite superiore sulla sezione d'urto di 47 fb (5.1 $\sigma_{t\bar{t}t\bar{t}}^{SM}$) e $\mu = \sigma_{t\bar{t}t\bar{t}}/\sigma_{t\bar{t}t\bar{t}}^{SM} = 1.7^{+1.9}_{-1.7}$
- Combinazione con il canale *Same-Sign Dilepton/Trilepton*: maggiori informazioni nel poster di **Mohammed Faraj** «Combination of searches for the production of tttt in the single lepton, opposite sign and same signs dileptons channels in pp collisions at √s=13 TeV with the ATLAS detector»

Bibliografia

- [1] ATLAS Collaboration, "Search for four-top-quark production in the single-lepton and opposite-sign dilepton final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector", arXiv:1811.02305, Phys. Rev. D 99, 052009 (2019), pubblication principale
- [2] ATLAS Collaboration, "Search for SM four top quark production in the single lepton finalstate using 3.2 fb-1 at 13 TeV", ATLAS-CONF-2016-020, referenza meno recente
- [3] ATLAS Collaboration, "Search for new phenomena in events with same-charge leptons and b-jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector", JHEP 12 (2018) 039, pubblicazione per gli altri canali di ricerca
- [4] CMS Collaboration, "Search for standard model production of four top quarks with samesign and multilepton final states in proton-proton collisions at $\sqrt{s} = 13$ TeV", Eur. Phys. J. C 78 (2018) 140, pubblicazione di CMS

LHC

Large Hadron Collider:

- acceleratore sotterraneo
- 27 km di circonferenza
- 14 TeV nel centro di massa

Quattro punti di collisione:

- ATLAS (A Toroidal LHC ApparatuS)
- CMS (Compact Muon Solenoid)
- ALICE (A Large Ion Collider Experiment)
- LHCb (Large Hadron Collider beauty)

Credits: http://www.scienzagiovane.unibo.it/LHC/LHC-page1.html

ATLAS

L'esperimento ATLAS è un rivelatore multifunzione costruito per esplorare la fisica delle particelle elementari, dallo studio del bosone di Higgs e del quark top alla ricerca delle extra dimensioni e della materia oscura.

ATLAS ha una struttura cilindrica a strati, chiamata *barrel*, racchiusa da due estremità chiamate *endcap*: in questo modo il rivelatore circonda interamente il punto di interazione.

- Inner Detector, usato per ricostruire le tracce e i vertici delle particelle cariche
- Calorimetro Elettromagnetico, usato per misurare la traiettoria e l'energia rilasciata da fotoni ed elettroni
- Calorimetro Adronico, usato per misurare la direzione e l'energia rilasciata dagli adroni
- Spettrometro per i muoni, usato per misurare la traiettoria e il momento dei muoni

L'Inner Detector è racchiuso in un magnete solenoidale (2T), mentre lo Spettrometro è immerso in un campo magnetico toroidale.

Credits: https://atlas.cern/discover/detector

25m

Selezione degli eventi

• Muoni

- $p_T > 20 (26)$ GeV e isolamento
- O $p_T > 50$ GeV e nessuna richiesta di isolamento
- $|\eta| < 2.5$
- Isolamento relativo $I_R/p_T < 0.06$
- Parametro di impatto longitudinale $|z_0 \sin \theta| < 0.5 \text{ mm}$
- Parametro di impatto trasversale $|d_0/\sigma(d_0)| < 3$
- Elettroni
 - $p_T > 24$ (26) GeV e isolamento
 - O $p_T > 60$ GeV e nessuna richiesta di isolamento
 - O $p_T > 120 (140)$ GeV e identificazione meno stringente
 - $|\eta| < 1.37 \text{ V} 1.52 < |\eta| < 2.47$
 - Isolamento relativo $I_R/p_T < 0.06$
 - Parametro di impatto longitudinale $|z_0 \sin \theta| < 0.5 \text{ mm}$
 - Parametro di impatto trasversale $|d_0/\sigma(d_0)| < 5$

Pre-selection requirements				
Requirement	Single-lepton	Dilepton		
Trigger	Single-lepton triggers			
Leptons	1 isolated	2 isolated, opposite-sign		
Jets	≥5 jets	≥4 jets		
<i>b</i> -tagged jets	$\geq 2 b$ -tagged jets			
Other	$E_{\rm T}^{\rm miss} > 20 { m GeV}$	$m_{\ell\ell} > 50 \text{ GeV}$		
	$E_{\rm T}^{\rm miss} + m_{\rm T}^{\rm W} > 60 \text{ GeV}$	$ m_{\ell\ell} - 91 > 8 \text{ GeV}$		

Selezione degli eventi

- Small-R jet:
 - Algoritmo anti- k_t con un parametro radiale di 0.4
 - $p_T > 25 \text{ GeV}$
 - $|\eta| < 2.5$
 - Criteri per eliminare i jet non provenienti dalla collisione
 - Criteri addizionali sul Jet Vertex Tagger per i jet con basso p_T
- b-tagged jet:
 - Algoritmo di *b-tagging* (77% di efficienza)
- Reclustered (RCLR) jet:
 - Small-R jet con $p_T > 25$ GeV che passano i criteri di JVT e *overlap removal*
 - *Reclustering* con anti- k_t con un parametro radiale di 1.0
 - Jet con p_T < 0.05 $p_T(RCLR)$ sono rimossi
- Mass-tagged RCLR jet:
 - $p_T > 200 \text{ GeV}$
 - $|\eta| < 2.0$
 - Massa > 100 GeV

Pre-selection requirements				
Requirement	Single-lepton	Dilepton		
Trigger	Single-lepton triggers			
Leptons	1 isolated	2 isolated, opposite-sign		
Jets	≥5 jets	≥4 jets		
<i>b</i> -tagged jets	$\geq 2 b$ -tagged jets			
Other	$E_{\rm T}^{\rm miss} > 20 { m GeV}$	$m_{\ell\ell} > 50 \text{ GeV}$		
	$E_{\rm T}^{\rm miss} + m_{\rm T}^{\rm W} > 60 \text{ GeV}$	$ m_{\ell\ell} - 91 > 8 \text{ GeV}$		

Phys. Rev. D 99, 052009 (2019)

Regioni di validazione

Jacopo Magro - IFAE 2019

Risultati

I risultati sono stati combinati con quelli del canale Same-Signed Dilepton/Trilepton

