

INCONTRI DI FISICA DELLE ALTE ENERGIE - EDIZIONE 2019

Ricerca di produzione elettrodebole di chargini e sleptoni con decadimenti in stati finali a due leptoni e momento trasverso mancante in dati di collisioni pp $a \sqrt{s} = 13$ TeV raccolti con il rivelatore ATLAS durante il Run 2

Abstract

La Supersimmetria (SUSY) è una delle estensioni più accreditate del Modello Standard (MS) delle particelle elementari. Ipotizzando che le particelle supersimmetriche abbiano massa dell'ordine del TeV, l'energia disponibile nel centro di massa e la natura degli oggetti collidenti (protoni) fanno di LHC il terreno ideale per la ricerca elettrodebole di particelle SUSY prive di carica di colore

Modello Standard Superimmetrico Minimale		Decadimenti ed interpretazioni
MODELLO STANDARD SUPERSIMMETRIA - Estauna u c t g u i i g i g u e <th>ensione del MS attraverso simmetria tra bosoni e nioni ogni particella del MS si vede l'esistenza di un erpartner il cui spin erisce di 1/2</th> <th> Modelli semplificati di decadimento [1] Piccola sezione d'urto attesa: 58.6 ± 4.7 fb per m(x[±]₁) = 400 GeV X⁰₁ Contributo rilevante al fondo dal processo di produzione di WW nel MS Segnatura: due leptoni di carica opposta (OS) </th>	ensione del MS attraverso simmetria tra bosoni e nioni ogni particella del MS si vede l'esistenza di un erpartner il cui spin erisce di 1/2	 Modelli semplificati di decadimento [1] Piccola sezione d'urto attesa: 58.6 ± 4.7 fb per m(x[±]₁) = 400 GeV X⁰₁ Contributo rilevante al fondo dal processo di produzione di WW nel MS Segnatura: due leptoni di carica opposta (OS)

- Neutralini ($\tilde{\chi}_{i=1,\dots,4}^{0}$) e Chargini ($\tilde{\chi}_{i=1,2}^{\pm}$): autostati di massa, elencati in ordine crescente di massa per le due categorie, combinazione di gaugini ed higgsini, rispettivamente neutri e carichi
- Conserva la R-parita $R = (-1)^{3(B-L)+2S}$, con B ed L numeri barionico e leptonico, S spin
- Per rottura spontanea di simmetria, si prevedono particelle SUSY a massa diversa dei partner del MS con autostati di massa combinazione di quelli di sapore

- ed energia trasversa mancante
- Analisi reinterpretata nel modello di produzione diretta di chargini che decadono via sleptoni supposti degeneri in massa, assunta a metà tra quella del chargino e quella del primo neutralino
- Analisi reinterpretata nel modello di produzione diretta di sleptoni: sono stati considerati soltanto \tilde{e} ed $\tilde{\mu}$, con \tilde{e}_L , \tilde{e}_R , $\tilde{\mu}_L$, $\tilde{\mu}_{R}$ supposti degeneri in massa

Strategia di Analisi

- Principali contributi di background: $t\bar{t}$ e Dibosoni (VV, V = W, Z), suddivisi in eventi Different Flavour (DF e_{μ}) e Same Flavour (SF $ee, \mu\mu$) questi ultimi con un veto sulla massa del bosone Z
- Gli eventi Z + jets ulteriormente rigettati mediante tagli su energia trasversa mancante (E^{miss}) ed E^{miss} significance [2], utlizzata per valutare la probabilità di produzione di particelle invisibili
- Analisi basata sulla variabile cinematica

$$m_{T2}(\mathbf{p}_{T}^{\ell_{1}},\mathbf{p}_{T}^{\ell_{2}},\mathbf{q}_{T}) = \min_{\substack{\mathbf{q}_{T}^{\ell_{1}} + \mathbf{q}_{T}^{\ell_{2}} = \mathbf{q}_{T}}} \left[\max\left(m_{T}(\mathbf{p}_{T}^{\ell_{1}},\mathbf{q}_{T}^{\ell_{1}}),m_{T}(\mathbf{p}_{T}^{\ell_{2}},\mathbf{q}_{T}^{\ell_{2}})\right) \right] \quad \text{con} \quad m_{T}(\mathbf{p}_{T},\mathbf{q}_{T}) = \sqrt{m_{p}^{2} + m_{q}^{2} + 2(p_{T}q_{T} - \mathbf{p}_{T} \cdot \mathbf{q}_{T})})$$

utilizzata per vincolare la massa di una coppia di particelle con decadimenti semi-invisibili. Tale variabile ha un endpoint cinematico alla massa del W per eventi t e WW di MS, ma più alto per segnali SUSY

Regioni	di	Segnale	(SRs)
---------	----	---------	-------

Regione	SR-DF-0J	SR-DF-1J	SR-SF-0J	SR-SF-1J	
<i>n</i> _{non-b-tagged jets}	= 0	= 1	= 0	= 1	
$p_T^{\ell_1,\ell_2}$ [GeV]		>	25		
$m_{\ell_1\ell_2}$ [GeV]	> 1	00	> 12	21.2	
E ^{miss} [GeV]		>	110		
$E_{\rm T}^{\rm miss}$ significance		>	10		
<i>n</i> _{b-tagged jets}		=	0		
	Binne	d SRs	Inclusiv	/e SRs	
	∈ [100	, 105)	∈ [10	$0,\infty)$	
	∈ [105	5, 110)	∈ [100	0, 120)	
	∈ [110	, 120)	∈ [120	, 160)	
	∈ [120	, 140)	∈ [16	$0,\infty$)	
<i>m</i> ₇₂ [GeV]	∈ [140	, 160)			
	∈ [160	, 180)			
	∈ [180	,220)			
	∈ [220	, 260)			
	∈ [26	$0,\infty)$			

Regioni di Control	lo (CRs)	

Regione	CR-WW	CR-VZ	CR-top
$p_T^{\ell_1,\ell_2}$ [GeV]	> 25	> 25	> 25
Lepton Flavour	DF	SF	DF
<i>n</i> b-tagged jets	= 0	= 0	= 1
<i>n</i> non-b-tagged jets	= 0	= 0	= 0
<i>m</i> _{T2} [GeV]	€ [60 , 65]	> 120	> 80
E ^{miss} [GeV]	∈ [60, 100]	> 110	> 110
anta a subscription of the second			

Regioni di Validatione (VRs)

Regione	VR-WW-0J	VR-WW-1J	VR-VZ	VR-top-low	VR-top-high	VR-top-WW
$p_T^{\ell_1,\ell_2}$ [GeV]	> 25	> 25	> 25	> 25	> 25	> 25
Lepton flavour	DF	DF	SF	DF	DF	DF
n _{b-tagged jets}	= 0	= 0	= 0	= 1	= 1	= 1
<i>n</i> non- <i>b</i> -tagged jets	= 0	= 1	= 0	= 0	= 1	= 1
<i>m</i> _{T2} [GeV]	∈ [65, 100]	∈ [65, 100]	∈ [100,120]	∈ [80, 100]	> 100	∈ [60 , 65]
E ^{miss} [GeV]	> 60	> 60	> 110	> 110	> 110	∈ [60, 100]

- Inclusive SRs per il calcolo dei limiti model-independent
- Binned SRs per il calcolo dei limiti model-dependent

 $E_{\rm T}^{\rm miss}$ significance $\in [5, 10]$ > 10 > 10 $m_{\ell_1 \ell_2}$ [GeV] > 100 | \in [61.2, 121.2] > 100

E ^{miss} significance	> 5	> 5	> 10	∈ [5, 10]	> 10	$\in [5, 10]$
$m_{\ell_1\ell_2}$ [GeV]	> 100	> 100	\in [61.2, 121.2]	> 100	> 100	> 100

- Principali contributi al fondo irriducibile del MS valutati in dedicate CRs, normalizzandoli ai dati mediante un likelihood fit: CR-WW per WW, CR-VZ per WZ e ZZ e CR-top per $t\bar{t}$ e singolo top-quark
- Il fondo riducibile di leptoni fake e non-prompt (FNP) stimato utilizzando il Metodo Matrix [3]
- Validazione della modellizzazione con il Monte-Carlo di WW ad alta m_{T2} effettuata attraverso una procedura a partire da eventi con tre leptoni: dato il buon accordo tra dati e simulazioni Monte-Carlo, nessuna incertezza sistematica aggiuntiva è stata applicata
- Incertezze sistematiche dominanti: teoriche sulla modellizzazione Monte-Carlo, di scala (jet energy scale JES) e risoluzione (jet energy) *resolution* - JER)

Risultati

Non avendo osservato nelle SRs nessun eccesso significativo [4] rispetto alle previsioni del MS, il risultato [5] può essere interpretato sia assegnando, con il metodo del CLs [6], un limite superiore alla sezione d'urto visibile dei processi di nuova fisica, sia derivando i limiti di esclusione sulle masse delle particelle supersimmetriche considerate nei tre modelli semplificati: chargino, neutralino e sleptoni

Referenze

- [4] R. D. Cousins, J. T. Linnermann and J. Tucker, *Evaluation of three methods for calculating statistical significance when* [1] J. Alwall, P. Schuster and N. Toro, Simplified Models for a First Characterization of New Physics at the LHC, Phys. Rev. D 79 (2009) 075020, arXiv: 0810.3921 [hep-ph]
- [2] ATLAS Collaboration, Object-based missing transverse momentum significance in the ATLAS Detector, ATLAS-CONF-2018-038, 2018, URL: https://cds.cern.ch/record/2630948
- [3] ATLAS Collaboration, Measurement of the top quark-pair production cross section with ATLAS in pp collisions at $\sqrt{s} = 7$ *TeV*, Eur. Phys. J. C **71** (2011) 1577, arXiv: 1012.1792 [hep-ex]

incorporating a systematic uncertainty into a test of the background-only hypothesis for a Poisson process, Nucl. Instrum. Meth. A 595 (2008) 480, arXiv: physics/0702156 [physics.data-en]

[5] ATLAS Collaboration, Search for electroweak production of charginos and sleptons decaying in final states with two leptons and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions using the ATLAS detector, ATLAS-CONF-2019-008, 2019, URL: http://cds.cern.ch/record/2668387

[6] A. L. Read, Presentation of search results: the CL_s technique, J. Phys. G 28 (2002) 2693