Measurement of ttH production cross section times branching ratio in the $\gamma\gamma$ decay channel with the full Run2 pp collision dataset collected by the ATLAS experiment at $\sqrt{s} = 13$ TeV

Davide Mungo

Università degli Studi di Milano & INFN Milano Incontri di Fisica delle Alte Energie, Napoli 2019

1. Introduzione e motivazione

Ricerca di stati finali di $H \rightarrow \gamma \gamma$ associati a una coppia di top quarks. Canale $\gamma\gamma$: eccellente risoluzione in $m_{\gamma\gamma}$, segnatura pulita \Rightarrow l'Higgs è osservato come uno stretto picco su un fondo continuo.

Modo di produzione tt già osservato con 80 fb⁻¹ ad ATLAS [4] combinando più canali

2. Selezione di-fotone

La selezione è basata sui fotoni. Selezionati eventi con:

almeno due fotoni ben identificati e isolati per ridurre i fondi γj e jj• $p_{\rm T}^{\gamma} > 35(25)$ GeV per il γ leading (subleading) e $|\eta| < 2.37$ (escludendo la regione di transizione $1.37 < |\eta| < 1.52$)

Motivazione

• Osservare la produzione tt H nel canale $\gamma\gamma$

Risultato del training

• massa invariante $105 < m_{\gamma\gamma} < 160 \, \text{GeV}$ La composizione del fondo risulta stabile in funzione del pileup.

Figura 1: Composizione del fondo in funzione del pile-up [3]

3. Categorizzazione degli Eventi

Gli eventi selezionati vengono divisi a seconda del decadimento dei bosoni W (adronico o semi-leptonico). Su ognuno dei set viene ottimizzato un BDT

Preselezione

- Richiesto almeno un jet *b*-tagged (77% WP) con $p_T > 25 \text{ GeV}$
 - **Decadimento adronico** Almeno due jet aggiuntivi, veto su leptoni

Decadimento semi-leptonico Almeno un leptone isolato

Training dei BDT

I BDT vengono allenati su segnale ttH da MC e fondo da regioni di controllo sui dati con:

BDT adronico

- **p**_T/ $m_{\gamma\gamma}$, η , ϕ dei due fotoni
- **E**, $p_{\rm T}$, η , ϕ e b-tag score di fino a 6 jets

BDT semi-leptonico

- **p**_T/ $m_{\gamma\gamma}$, η , ϕ dei due fotoni
- **E**, $p_{\rm T}$, η , ϕ di fino a 4 jets
- **E**, $p_{\rm T}$, η , ϕ di fino a 2 leptoni

Definite 7 categorie: 4 adroniche, 3 leptoniche

- **modulo e direzione di** $E_{\rm T}^{\rm miss}$

modulo e direzione di $E_{\rm T}^{\rm miss}$

Si definiscono delle categorie con l'output dei BDT, ottimizzando la sensitivà attesa del processo ttH.

Figura 2: Output del BDT adronico applicato su diversi processi. "Non-tt Higgs" raggruppa i fondi $t \bar{t} \gamma \gamma$, tH e ggF [2]

Figura 3: Output del BDT semi-leptonico applicato su diversi processi. "Non-tī Higgs" raggruppa i fondi $t\bar{t}\gamma\gamma$ e VH [2]

4. Procedura statistica

Fit simultaneo di maximum likelihood dello spettro $m_{\gamma\gamma}$ delle 7 categorie. Il parametro di interesse è la signal strength μ , definita come $\sigma_{mis} = \mu \sigma_{SM}$ Modi di produzione diversi da ttH, come ggF, VBF etc, fissati allo SM

Massa del bosone di Higgs fissata a 125.09 \pm 0.24 GeV [1]

Parametrizzazione del Segnale

Figura 4: Modello di segnale per le due categorie con la risoluzione migliore (Had 1) e peggiore (Lep 3) [2]

5. Risultati

Figura 5: Somma degli spettri osservati di $m_{\gamma\gamma}$ in ognuna delle categorie. Gli eventi sono pesati per $\ln(1 + S_{90}/B_{90})$, dove S_{90} (B_{90}) indica il numero di eventi aspettati nella più piccola finestra in $m_{\gamma\gamma}$ contenente il 90% degli eventi di segnale (fondo). Le barre di errore rappresentano l'intervallo di confidenza al 68% della somma pesata [2]

Figura 6: Numero di eventi per categoria nella più piccola finestra in $m_{\gamma\gamma}$ contenente il 90% di segnale ttH. Il background aspettato è estratto dal fit e mostrato in viola. Il fondo risonante non-ttH è mostrato in verde e il segnale ttH (per una signal strength di 1.4) in rosso [2]

Incertezze sistematiche

Yield categorie:

- **Teoriche: UnderlyingEvents & PartonShower (impatto finale 7%), heavy** flavor jet per processi non ttH (4%), termini QCD higher order (4%)
- Sperimentali: ricostruzione dei jet (2%), efficienza identificazione & isolamento fotoni (2%)

Forma del segnale:

Scala (2.7%) e Risoluzione (6%) energetica fotoni

Parametrizzazione del Fondo

Funzione analitica scelta in modo da minimizzare l'errore sistematico: fit S + B su un template MC di solo background per diverse masse da 121 a 129 GeV

scelta la funzione che ha il minor *S*; l'errore sistematico è

 $\max_{m_{\gamma\gamma} \in [121-129]} |S|: \text{ impatto sulla misura } \sim 2\%$

Osservata: 4.9 σ Aspettata: 4.2 σ

Misura della sezione d'urto ttH moltiplicata per la frazione di decadimento $H \rightarrow \gamma \gamma$:

Osservata: $\sigma_{t\bar{t}H} \times BR_{\gamma\gamma} = 1.59 \, {}^{+0.43}_{-0.39} \, \text{fb} = 1.59 \, {}^{+0.38}_{-0.36}$ (stat) ${}^{+0.15}_{-0.12}$ (exp) ${}^{+0.15}_{-0.11}$ (theo) fb Aspettata: $\sigma_{t\bar{t}H} \times BR_{\gamma\gamma} = 1.15 \stackrel{+0.09}{_{-0.12}}$ fb compatibile entro 1σ

Bibliografia

- ATLAS and CMS Collaborations. "Combined Measurement of [3] the Higgs Boson Mass in pp Collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS and CMS Experiments". In: Phys. Rev. Lett. 114 (2015).
- ATLAS Collaboration. *Measurement of Higgs boson produc-* [4] [2] tion in association with a $t\bar{t}$ pair in the diphoton decay channel using 139 fb^{-1} of LHC data collected at $\sqrt{s} = 13$ TeV by the ATLAS experiment. Geneva, mar. 2019.

ATLAS Collaboration. Measurements of Higgs boson properties in the diphoton decay channel using 80 fb^{-1} of pp collision data at \sqrt{s} = 13 TeV with the ATLAS detector. Geneva, giu. 2018.

ATLAS Collaboration. "Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector". In: Phys. Lett. B784 (2018), pp. 173–191.