

Entering the multi messenger area of Astronomy

M. Drago

GSSI and INFN-LNGS for the LIGO and Virgo collaborations

GRAN SASSO SCIENCE INSTITUTE

Multimessenger detections

Multi-messenger sources

Coalescence of binary system of neutron stars and/or stellarmass black-hole

Isolated neutron stars

Core-collapse of massive stars

GW point of view

GW answering to counterparts GW triggering counterparts

M. Drago

A new window to the universe

LVC arXiv:1811.12907

M. Drago

IFAE 2019

S G S

Ex-triggered

Combined exclusion distance for 20 short GRBs analyzed with the coalescence search for both a BNS and an NS-BH progenitor (top) and for all 31 GRBs analyzed with the generic transient search for ADI-A and standard siren CSG GW transients at 150 Hz with an energy of E_{aw} =10⁻²M $_{\odot}c$ (bottom). We exclude at 90% confidence level cumulative distance distributions that pass through the region above the solid curves

- counterparts
 - GRB
 - Core collapse supernovae
 - FRB
 - Neutrinos

1.0Model Exclusion Probability, P_{excl} 0.8 0.6 0.4 0.0

> The different curves show how the probability, or confidence, with which we could exclude a CCSN model is expected to scale the sensitivity to the waveform amplitude (denoted by A). *Currently p*=*A*=1 *so we cannot yet make any statements* excluding this model.

GW community perform searches triggered by

6

S

GW Followup

- GW candidates triggering counterparts
- In O3 OPA (Open Public Alert) Era begins: no more «Event validation»: trigger automatically sent out (and eventually manually retracted)

EM facilities

See P. Savina poster on Pierre-Auger Observatory

GW150914

- First detection of GW
- Coalescence of Black Holes
- Only LIGO detectors
- Open the GW astrophysics

Simulation of merging black holes radiating gravitational waves Credits: <u>NASA/Ames Research Center/C. Henze</u>

Phys. Rev. Lett. **116** (6): 061102

GW150914 follow-up

- First exercise on a real event event
- Big covered area (230 deg^2)
- No found counterparts (as expected)

01

VS

- 3 alerts:
 - GW150914
 - G194575
 - GW151226
- 2 confirmed detection and 1 rejection

LVC arXiv:1811.12907

11 confident detections

Consistent with noise

Credits: M. Branchesi

G S S I

GW170814: the first HLV detection

M. Drago

IFAE 2019

- Blue: two LIGO detectors only (1160
- Orange: Adding Virgo (100 square
- Green: full parameter estimation analysis with three detectors (80
- Not shown: full parameter estimation using two LIGO detectors (700 square

Multimessenger detections

And astrophysics discoveries

M. Drago

IFAE 2019

1987 supernova

- Probably the first multi-messenger detection
 - EM spectrum
 - Neutrino
 - No GW observed (Resonant bars)

Credits: By NASA, ESA, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation) and P. Challis (Harvard-Smithsonian Center for Astrophysics)

S

GW170817

M. Drago

- Ligo-L showing a glitch occurring during the event
- Follow-up campaign found EM counterparts

GW			2 22		1					
		1 1 1			1					
-ray										
mi, INTEGRAL, Astrosat, IPN, Insight-HXMT, Swi	ift, AGILE, CALET, H.E.S.S	., HAWC, Konus-Wind								
(-ray									1-	1
rift, MAXI/GSC, NuSTAR, Chandra, INTEGRAL									/ •	
				1		11			/	
JV					100		-		/	-
JV vitt, HST					-				/	
									/	
					1	1	1	9	/	
							1	/	/	
						_	1		/	
Dptical wope, DECam, DLT40, REM-ROS2, HST, Las Cun CT, TZAC, LSGT, T17, Germini-South, NTT, GRON	nbres, SkyMapper, VISTA, ID, SOAR, ESO-VLT, KMTN	MASTER, Magellan, Sut Net, ESO-VST, VIRT, SAL	Daru, Pan-STARBST,	PROS,						
vope, DECam, DLT40, REM-ROS2, HST, Las Cun CT, TZAC, LSGT, T17, Gemini-South, NTT, GRON DOTES-5, Zadko, iTelescope.Net, AAT, Pi of the Si	nbres, SkyMapper, VISTA, D, SOAR, ESO-VLT, KMTN ky, AST3-2, ATLAS, Danish	MASTER, Magellan, Sut Net, ESO-VST, VIRT, SAI Tel, DFN, T80S, EABA	Daru, Pan-STARB&T, T, CHILESCOPE, TC	PROS,				1/1		
vope, DECam, DLT40, REM-ROS2, HST, Las Cun CT, TZAC, LSGT, T17, Gernini-South, NTT, GRON DOTES-5, Zadko, Telescope.Net, AAT, Pi of the Si	ky, AST3-2, ATLAS, Danish	Tel, DFN, T80S, EABA	/	DROS,						
vope, DECam, DLT40, REM-ROS2, HST, Las Cun 27, TZAC, LSGT, T17, Gernini-South, NTT, GRON XOTES-5, Zadko, ITelescope.Net, AAT, Pi of the Si	ky, AST3-2, ATLAS, Danish	Tel, DFN, T80S, EABA	/	PROS,			 			-
vope, DECam, DLT40, REM-ROS2, HST, Las Cun CT, TZAC, LSGT, T17, Gernini-South, NTT, GRON DOTES-5, Zadko, Telescope.Net, AAT, Pi of the Si	ky, AST3-2, ATLAS, Danish	Tel, DFN, T80S, EABA	/	PROS,						-
vope, DECam, DLT40, REM-ROS2, HST, Las Cun CT, TZAC, LSGT, T17, Gemini-South, NTT, GRON DOTES-5, Zadko, Trelescope.Net, AAT, PI of the SI R EM-ROS2, VISTA, Gemini-South, 2MASS, Spitzer,	ky, AST3-2, ATLAS, Danish	Tel, DFN, T80S, EABA	/	PROS,						-
vope, DECam, DLT40, REM-ROS2, HST, Las Cun CT, TZAC, LSGT, T17, Gemini-South, NTT, GRON DOTES-5, Zadko, ITelescope.Net, AAT, PI of the SI R EM-ROS2, VISTA, Gemini-South, 2MASS,Spitzer, Radio	ky, AST3-2, ATLAS, Danish	n Tel, DFN, T80S, EABA T, ESO-VLT, Kanata Tele	scope, HST	PROS,						-
vope, DECam, DLT40, REM-ROS2, HST, Las Cun CT, TZAC, LSGT, T17, Gemini-South, NTT, GRON DOTES-5, Zadko, ITelescope.Net, AAT, PI of the SI R EM-ROS2, VISTA, Gemini-South, 2MASS,Spitzer, Radio	ky, AST3-2, ATLAS, Danish	n Tel, DFN, T80S, EABA T, ESO-VLT, Kanata Tele	scope, HST	PROS,						
	ky, AST3-2, ATLAS, Danish NTT, GROND, SOAR, NOT	n Tel, DFN, T80S, EABA T, ESO-VLT, Kanata Tele	scope, HST rkes, SRT, Effelsberg	PROS,						
vope, DECam, DLT40, REM-ROS2, HST, Las Cun TTZAC, LSGT, T17, Gemini-South, NTT, GRON DOTES-5, Zadko, ITelescope.Net, AAT, PI of the SI R B R RAROS2, VISTA, Gemini-South, 2MASS,Spitzer, Radio	ky, AST3-2, ATLAS, Danish	n Tel, DFN, T80S, EABA T, ESO-VLT, Kanata Tele	scope, HST	PROS,						

IFAE 2019

Coincident detection between GW and GRB

M. Drago

IFAE 2019

EJECTED MASS $\sim 0.03 - 0.05 M_{\odot}$ EXPANSION VELOCITY $\sim 0.1 - 0.3 c$

First spectral identification of the kilonova emission

- the data revealed signatures of the radioactive decay of r-process nucleosynthesis (Pian et al. 2017, Smartt et al. 2017)
- BNS merger site for heavy element production in the Universe!

(Cote et al. 2018, Rosswog et al. 2017)

Credits: M. Branchesi

S

(i

GW velocity

Constraining velocity rules out modified gravity models

Considering the delay between GW and GRB, and the distance they travelled

- $\Delta t = 1.74 \pm 0.05 s$
- d ~ 40 Mpc

we have:

• $-3 \cdot 10^{-15} \le \Lambda c/c \le 7 \cdot 10^{-16}$

LVC 2017, APJL, 848, L13

H₀ measurement

Combine distance from GW:

 $d = 43.8^{+2.9}_{-6.9}$ Mpc

And NGC4993 recession velocity we have:

M. Drago

IFAE 2019

 $H_0 = 70^{+12.0}_{-8.0}$ Mpc

Abbott et al. 2017, Nature, 551, 85A

Neutrino + EM

- September 22nd, 2017: Trigger alert from IceCube of a high energy neutrino event
- Fermi-LAT detects a blazar in a high gamma-ray state in the neutrino field of view
- IACTs observations triggered
- MAGIC detected a significant signal (just before the full moon break)

M. Drago

The SED is based on observations obtained within 14 days of the detection of the IceCube-170922A event. The vertical axis is equivalent to a scale Differential flux upper limits (shown as colored bands and indicated as "UL" in the legend) are quoted at the 95% CL, while markers indicate significant detections. Archival observations are shown in gray to illustrate the historical flux level of the blazar in the radio-to-keV range as retrieved from the ASDC SED Builder (62), and in the γ -ray band as listed in the Fermi-LAT 3FGL catalog (23) and from an analysis of 2.5 years of HAWC data.. Representative neutrino flux upper limits that produce on average one detection like IceCube-170922A over a period of 0.5 (solid black line) and 7.5 years (dashed black line) are shown, assuming a spectrum of at the most probable neutrino energy (311 TeV).

The 50% and 90% containment regions for the neutrino IceCube-170922A (dashed red and solid gray contours, respectively. Gamma-ray sources in this region previously detected with the *Fermi* spacecraft are shown as blue circles, with sizes representing their 95% positional uncertainty and labeled with the source names. The yellow circle shows the 95% positional uncertainty of very-highenergy γ -rays detected by the MAGIC telescopes during the follow-up campaign.

The future is now

Waiting for GW+EM+Neutrino...

S G S

O3 has started April 1st

							L	IGO-VI			
Epoch			2018-2019			(Pub	lic doc		t G18		
Planned run du	iration		12 months		2018	3			201	9	
Expected burst	t range/Mpc	LIGO Virgo	75 - 90 40 - 50		Sep	Oct	Nov	Dec	Jan	Feb	
		KAGRA						rom 8am 6 am PT I		14	ER O3
Expected BNS	range/Mpc	LIGO Virgo	120 - 170 65 - 85		Com	missionir	ng	ER13	Commi	issioning	E
		KAGRA		G						 	
Achieved BNS	s range/Mpc	LIGO Virgo		0 ^{L1}	Com	missionir	ng	ER13	Commi	issioning	E
		KAGRA				 	 				1
Estimated BNS	S detections		1-50	VIRGO	Com	imissionii	ng	ER13	Commi	issioning	E
Actual BNS de	etections									1	
90% CR	% within	5 deg^2	1-4	GEO						~70	% (
		20 deg^2	12-21			1	1			1	
	Median/deg ²		120 - 180			1	or oper	1	Î.	1	
Searched area	% within	•	20 - 26			(sma	II fraction			•	e t
		20 deg^2	42-50			m	Deteo ode for	ctor in a a fracti		•	9
						dur	ing Eng	gineerir	ng Run	s (ERs),

FIRST O3 EVENT YESTERDAY!!!

M. Drago

LIGO-VIRGO Joint Run Planning Committee

schedule for O3

056-v4, based on G1800889-v7)

	5			201	9							
)	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	
	1		rom 8am 6 am PT I		14	ER14: up O3 to fol		weeks, s	starting a	it the ea	rliest March	1st, 2019
m	missionin	g	ER13	Commi	ssioning	ER14		O3: c	ne calend	dar year	long	
m	missionin	g	ER13	Commi	ssioning	ER14		O3: o	one calend	dar year	long	
om	missionin	g	ER13	Commi	ssioning	ER14		O3: c	one calend	dar year	long	
	1			 			 					
					~709	% obsei	rving n	node				
	1								1			
	(smal	l fractio Deteo	on of ol	bservin observi	ig mod ng	ng mod e time)				(down	roducing o time) erving mod	
	duri	ng Eng	a fracti gineerir alerts w	ng Runs	s (ERs),		Oŗ	(Obser	ving Run, erts in low	

 \mathbf{O}