LEPTOGENESI A BASSA SCALA E PROSPETTIVE SPERIMENTALI

Michele Lucente

Incontri di Fisica delle Alte Energie 2019

8 Aprile 2019, Centro Congressi Partenope - Napoli

In collaborazione con:

A. Abada, G. Arcadi, V. Domcke, M. Drewes, A. Giammanco, J. Hajer, J. Klaric and O. Mattelaer

Observational problems of the SM

Two seemingly unrelated observations cannot be accounted for in the Standard Model

I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, arXiv:1611.01514 [hep-ph]

The Universe has a negligible amount of antimatter

$$\eta_{\Delta B} = (6.13 \pm 0.03) \times 10^{-10}$$

N. Aghanim et al. [Planck Collaboration], arXiv:1807.06209 [astro-ph.CO]

The natural (simple) way

Complete the SM field pattern with right-handed neutrinos

Figure from S. Alekhin et al., arXiv:1504.04855 [hep-ph]

Neutrino masses and leptogenesis

Type-I seesaw mechanism: SM + gauge singlet fermions N_I $\mathcal{L} = \mathcal{L}_{SM} + i\overline{N_I}\partial N_I - \left(F_{\alpha I}\overline{\ell_L^{\alpha}}\partial N_I + \frac{M_{IJ}}{2}\overline{N_I^c}N_J + h.c.\right)$

After electroweak phase transition $< \Phi > = v \simeq 174$ GeV

$$m_{\nu} = -v^2 F \frac{1}{M} F^T$$

The Lagrangian provides the ingredients for leptogenesis too

Complex Yukawa couplings F as a source of CP ✓

Sakharov conditions

- \mathcal{B} from sphaleron transitions until T_{EW} \simeq 140 GeV \checkmark
- sterile neutrinos deviations from thermal equilibrium

Neutrino masses and leptogenesis

Type-I seesaw mechanism: SM + gauge singlet fermions N₁ $\mathcal{L} = \mathcal{L}_{\rm SM} + i\overline{N_I}\partial N_I - \left(F_{\alpha I}\overline{\ell_L^{\alpha}}\partial N_I + \frac{M_{IJ}}{2}\overline{N_I^{c}}N_J + h.c.\right)$

After electroweak phase transition $\langle \Phi \rangle = v \simeq 174 \text{ GeV}$

$$m_{\nu} = -v^2 F \frac{1}{M} F^T$$

The Lagrangian provides the ingredients for leptogenesis too

Sakharov conditions

- Complex Yukawa couplings F as a source of CP
 - **B** from sphaleron transitions above $T_{EW} \approx 140 \text{ GeV}$ sterile neutrinos deviations from thermal equilibrium

BAU: ARS mechanism E. K. Akhmedov, V. A. Rubakov and A. Y. Smirnov, hep-ph/9803255

Sterile neutrinos out of equilibrium at large temperatures

ARS leptogenesis A. Abada, S. Antusch, E. K. Akhmedov, G. Arcadi, T. Asaka, S. Blanchet, I. Boiarska, How does the K. Bondarenko, A. Boyarsky, L. Canetti, A. Caputo, E. Cazzato, V. Domcke, M. Drewes, S. Eijima, O. Fischer, T. Frossard, B. Garbrecht, J. Ghiglieri, D. Gueter, T. Hambye, mechanism P. Hernández, H. Ishida, M. Kekic, J. Klaric, M. Laine, J. López-Pavón, M.L., work? M. Ovchynnikov, J. Racker, N. Rius, V. A. Rubakov, O. Ruchayskiy, J. Salvado, M. Shaposhnikov, A. Y. Smirnov, D. Teresi, I. Timiryasov... Two kinds of *GP* processes Lepton number conserving (neutrino generation and oscillations) $N_I N$ NΦ $\Phi^{\dagger}\Phi$ $Q_L Q$ L_{α} N_I N_J

Lepton number violating

(thermal Higgs decay) T. Hambye and D. Teresi, arXiv:1606.00017 [hep-ph], arXiv:1705.00016 [hep-ph]

Asymmetry generation example with 3 RHN

The minimal scenario: 2 RH-Neutrinos

Two RH-neutrinos suffice to account for neutrino oscillation data

S. F. King, hep-ph/9912492, hep-ph/0204360

P. H. Frampton, S. L. Glashow and T. Yanagida, hep-ph/0208157

A. Donini, P. Hernandez, J. Lopez-Pavon and M. Maltoni, arXiv:1106.0064 [hep-ph]

Constrained flavour pattern 0. . 1. 0.2 0.8 0.2 0.8 NO 10 UHI PIUP 0.6 0.4 0.6 0.6 0.8 0.2 0.8 0.2 1. 0. 0. 0.2 0.2 0.8 0. 0.4 0.6 1. 0. 0.4 0.6 0.8 1. U_{ei}^2/U_i^2 U_{ei}^{2}/U_{i}^{2}

M. Drewes, J. Hajer, J. Klaric and G. Lanfranchi, arXiv:1801.04207 [hep-ph] A. Caputo, P. Hernandez, J. Lopez-Pavon and J. Salvado, arXiv:1704.08721 [hep-ph]

Large hierarchies in the couplings to different SM flavours not allowed

Leptogenesis with 2 RH-neutrinos

Too large active-sterile couplings enable equilibration of HNL and asymmetry washout

Washout is flavour-dependent, but "democratic" couplings for 2 RHN

Not possible to store the asymmetry in a feebly coupled flavour while the other mixings are large

Figures from I. Boiarska, K. Bondarenko, A. Boyarsky, S. Eijima, M. Ovchynnikov, O. Ruchayskiy and I. Timiryasov, arXiv:1902.04535 [hep-ph]

See also L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, arXiv: 1208.4607 [hep-ph]; A. Abada, G. Arcadi, V. Domcke and M.L., arXiv: 1507.06215, arXiv:1709.00415 [hep-ph]; P. Hernández, M. Kekic, J. López-Pavón, J. Racker and J. Salvado, arXiv:1508.03676, arXiv:1606.06719 [hepph]; S. Eijima, M. Shaposhnikov and I. Timiryasov, arXiv:1808.10833 [hep-ph]

Leptogenesis with 3 RH-neutrinos

12

A Heavy Metal Path to New Physics

Heavy ion collisions

Each nucleus ${}^{A}_{Z}N$ contains A nucleons

In *NN* collisions, number of parton level interactions enhanced by a factor A²

For instance with
$$^{208}_{82}$$
Pb > $\frac{\sigma_{PbPb}}{\sigma_{Pp}} \propto A^2 \simeq 4.3 \times 10^4$

See also R. Bruce et al., arXiv:1812.07688 [hep-ph]

Features of Heavy Ions runs

Smaller collision energy $\sqrt{s_{\rm PbPb}} = 5.52 \text{ TeV}$ vs $\sqrt{s_{\rm pp}} = 14 \text{ TeV}$

	Int. Iuminosity	expected <i>pp</i>	expected PbPb
Lower instantaneous luminosity	Run 2	100 fb ⁻¹	1 nb ⁻¹
	HL LHC	3000 fb ⁻¹	10 nb-1

Cross section enhancement

$$\frac{\sigma_{\rm PbPb}}{\sigma_{\rm Pp}} \propto A^2 \simeq 4.3 \times 10^4$$

Lower instantaneous luminosity

The lower instantaneous luminosity allows to lower the trigger thresholds

Can test regions of parameter space that are difficult to be tested with protons

E.g. scenarios involving light mediators result in signatures with low transverse momentum p_T

HNL production/decay

We consider two channels: W and B mediated HNL production

- Fully simulated using MadGraph5_aMC@NLO
- trigger on first μ with p_T > 25 GeV
- search for displaced μ with d > 5 mm

- Cannot be fully simulated in MadGraph5_aMC@NLO
- Use analytic estimate validated against W simulation

$$N_d = \frac{L_{\text{int}} \sigma_B^{[A,Z]}}{9} \left[1 - \left(\frac{M_i}{m_B}\right)^2 \right]^2 U_\mu^2 \left(e^{-l_0 \lambda} - e^{-l_1 \lambda} \right) f_{\text{cut}}$$

- trigger on first μ with p_T > 3 GeV for HI collisions, realistic online trigger for pp collisions
 - search for displaced μ with d > 5 mm

Conclusion

We performed the **first systematic study** of the **low-scale leptogenesis** scenario in the minimal Standard Model extended with **3 right-handed neutrinos** having masses at the **GeV scale**

Low-scale solutions are testable in current experiments in the large-mixing region

Heavy ion collisions allow to search for hidden new physics

Lower trigger requirements could be the key advantage of heavy ion collisions over proton collisions

HNL are a simple example of this idea, but other models are just as well testable

Backup

Kinetic equations for freeze-in leptogenesis

G. Sigl and G. Raffelt, Nucl. Phys. B 406 (1993) 423; E. K. Akhmedov, V. A. Rubakov and A. Y. Smirnov, hep-ph/9803255; T. Asaka and M. Shaposhnikov, hep-ph/0505013; T. Asaka, S. Eijima and H. Ishida, arXiv:1112.5565 [hep-ph]; L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, arXiv:1208.4607 [hep-ph]; P. Hernández, M. Kekic, J. López-Pavón, J. Racker and J. Salvado, arXiv:1606.06719 [hep-ph]; S. Antusch, E. Cazzato, M. Drewes, O. Fischer, B. Garbrecht, D. Gueter and J. Klaric, arXiv:1710.03744 [hep-ph]; A. Abada, G. Arcadi, V. Domcke, M. Drewes, J. Klaric and M.L., arXiv:1810.12463 [hep-ph]

$$\begin{aligned} \frac{dR_N}{dt} &= -i\left[\langle H \rangle, R_N\right] - \frac{1}{2} \langle \gamma^{(0)} \rangle \left\{ F^{\dagger}F, R_N - I \right\} - \frac{1}{2} \langle \gamma^{(1b)} \rangle \left\{ F^{\dagger}\mu F, R_N \right\} + \langle \gamma^{(1a)} \rangle F^{\dagger}\mu F + \\ &- \frac{1}{2} \langle \widetilde{\gamma}^{(0)} \rangle \left\{ M_M F^T F^* M_M, R_N - I \right\} + \frac{1}{2} \langle \widetilde{\gamma}^{(1b)} \rangle \left\{ M_M F^T \mu F^* M_M, R_N \right\} + \\ &- \langle \widetilde{\gamma}^{(1a)} \rangle M_M F^T \mu F^* M_M , \\ \frac{d\mu_{\Delta a}}{dt} &= - \frac{9\zeta(3)}{2N_D \pi^2} \left\{ \langle \gamma^{(0)} \rangle \left(FR_N F^{\dagger} - F^* R_{\bar{N}} F^T \right) - 2 \langle \gamma^{(1a)} \rangle \mu F F^{\dagger} + \\ &+ \langle \gamma^{(1b)} \rangle \mu \left(FR_N F^{\dagger} + F^* R_{\bar{N}} F^T \right) \\ &+ \langle \widetilde{\gamma}^{(0)} \rangle \left(F^* M_M R_{\bar{N}} M_M F^T - F M_M R_N M_M F^{\dagger} \right) - 2 \langle \widetilde{\gamma}^{(1a)} \rangle \mu F^* M_M^2 F^T \\ &+ \langle \widetilde{\gamma}^{(1b)} \rangle \mu \left(F^* M_M R_{\bar{N}} M_M F^T + F M_M R_N M_M F^{\dagger} \right) \right\}_{aa}, \end{aligned}$$

BAU: Thermal leptogenesis

Sterile neutrinos in thermal equilibrium if $|F| \gtrsim 10^{-7}$

Thermal leptogenesis: sterile neutrinos in equilibrium at large temperatures

Testability?

Seesaw scaling $m_{\nu} = -v^2 F \frac{1}{M} F^T$

 $|U_{\alpha i}| \lesssim \sqrt{\frac{m_{\nu}}{M}} \lesssim 10^{-5} \sqrt{\frac{m_{\nu}}{M}}$

In the **absence** of any **structure** in the F and M matrices

But these are (complex) matrices: cancellations are possible **IFAE 2019**

SM as an effective theory

Relaxing the renormalizability condition there is only one dim=5 gauge invariant operator (Weinberg operator) S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566 $\Delta L = 2$ $\frac{1}{2} \frac{c_{\alpha\beta}}{\Lambda} \underbrace{\left(\overline{l_L^c}_{\alpha} \widetilde{\Phi}^*\right) \left(\widetilde{\Phi}^{\dagger} l_L^{\beta}\right)}_{<\Phi>} + h.c. \xrightarrow{\mathsf{EWSB}}_{<\Phi>} \underbrace{\frac{v^2}{2} \frac{c_{\alpha\beta}}{\Lambda} \overline{\nu_L^c}_{\alpha} \nu_{L\beta} + h.c.}_{\mathsf{New physics}}$ scale ν_L ν_L $c_{\alpha\beta} \frac{v}{\Lambda} v \lesssim \text{eV} \ll v$ Why are neutrinos so light? $\frac{v}{\Lambda} \ll 1$ High NP scale <u>Suppression</u> $c_{\alpha\beta} \ll 1$ Symmetry (Lepton number) mechanisms $c_{\alpha\beta} \ll 1$ Accidental cancellations

SM as an effective theory

Relaxing the renormalizability condition there is only one dim=5 gauge invariant operator (Weinberg operator) S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566 $\Delta L = 2$ $\frac{1}{2} \frac{c_{\alpha\beta}}{\Lambda} \underbrace{\left(\overline{l_{L\alpha}^c} \widetilde{\Phi}^*\right) \left(\widetilde{\Phi}^{\dagger} l_{L}^{\beta}\right)}_{<\Phi^{>}} + h.c. \xrightarrow{\mathsf{EWSB}}_{<\Phi^{>}} \underbrace{\frac{v^2}{2} \frac{c_{\alpha\beta}}{\Lambda} \overline{\nu_{L\alpha}^c} \nu_{L\beta} + h.c.}_{\mathsf{New physics}}$ scale ν_L ν_L $c_{\alpha\beta} \frac{v}{\Lambda} v \lesssim \text{eV} \ll v$ Why are neutrinos so light? $\ll 1$ High NP scale $\approx \text{GeV}$ <u>Suppression</u> $c_{\alpha\beta} \ll 1$ Symmetry (Lepton number) mechanisms

 $c_{\alpha\beta} \ll 1$ Accidental cancellations

Fine tuning

If a symmetry is present in the Lagrangian, it will be manifest at any order in perturbation theory

The neutrino mass scale is stable under radiative corrections

We compute neutrino masses m_v at 1-loop, and quantify the level of fine-tuning of a solution as

$$f.t.(m_{\nu}) = \sqrt{\sum_{i=1}^{3} \left(\frac{m_i^{\text{loop}} - m_i^{\text{tree}}}{m_i^{\text{loop}}}\right)^2}$$

*m*ⁱ ^{loop} 1-loop neutrino mass spectrum

m_i tree tree-level neutrino mass spectrum

Neutrinoless effective mass

M. Lucente (UCLouvain)

IFAE 2019

Mass spectrum with 3 right-handed neutrinos and B - L approximate symmetry

If there is an **odd number** of **right-handed neutrinos** and **B - L** approximate **symmetry**

If the vacuum mass of the decoupled state is heavier than the pseudo-Dirac one, there is **necessarily** a level crossing at some finite temperature!

Level crossing: resonant asymmetry production

HI: Smaller collision energy

The charge to mass ratio is smaller for heavy ions

Smaller energy collision per nucleon

$$\sqrt{s_{\rm PbPb}} = 5.52 \,\,{\rm TeV}$$

$$\sqrt{s_{\rm pp}} = 14 \,\,{\rm TeV}$$

Scaling factor

- Typically larger for gluon-initiated processes than for quark-antiquark ones
- Grows with the particle masses in the final state

HI: Lower instantaneous luminosity

LHC can only collect a sizeably lower luminosity with heavy ions due to machine limitations

Int. luminosity	expected pp	expected PbPb
Run 2	100 fb ⁻¹	1 nb ⁻¹
HL LHC	3000 fb ⁻¹	10 nb ⁻¹

This is due to ultraperipheral electromagnetic interactions:

Bound-Free Pair-Production (BFPP): $\sigma_{\rm BFPP} \propto Z'$

 $^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{82+} \longrightarrow ^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{81+} + e^+$

Electromagnetic Dissociation (EMD): $\sigma_{\text{EMD}} \propto \frac{(A-Z)Z^3}{A^{2/3}}$

 $^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{82+} \longrightarrow ^{208}\text{Pb}^{82+} + ^{207}\text{Pb}^{82+} + n$

For PbPb with E_b=7ZTeV

		BF	PP		Hadronic		
1	Symbole	Symbole $\sigma_{c,BFPP1} \sigma_{c,BF}$		$\sigma_{ m c,EMD1}$	$\sigma_{ m c,EMD2}$	$\sum \sigma_{ m c,EMD}$	$\sigma_{ m c,hadron}$
	Cross-section [b]	281	0.006	96	29	226	8

M. Schaumann, CERN-THESIS-2015-195

HI: Impact of electromagnetic processes

Two problems arise

Creation of secondary beams with wrong charge to mass ratio

Risk of quenching magnets!

Ρ

h

У

S

i

С

S

$$\frac{\mathrm{d}N_b}{\mathrm{d}t} = -\frac{N_b^2}{N_0\tau_b}$$

- N_b: number of ions per bunch
- N_0 : initial value for N_b
- n_b: number of bunches per beam
- n_{IP}: number of interaction points
- L₀: initial value for luminosity

M. Benedikt, D. Schulte and F. Zimmermann, Phys. Rev. ST Accel. Beams 18 (2015) 101002

M. Lucente (UCLouvain)

Larger value of σ_{tot}

Faster beam decay

IFAE 2019

HI: Cross section enhancement

In *NN* collisions, number of parton level interactions enhanced by a factor A²

This partially compensates the loss in statistics due to a lower luminosity

HI: Larger track multiplicity

Huge number of tracks from PbPb events, but same vertex

For central events at $\sqrt{s_{\text{PbPb}}} = 5.52 \text{ TeV}$ ALICE Collaboration, arXiv:1512.06104 [nucl-ex]

In pp multiplicity mainly due to pile-up

CMS Collaboration, arXiv:1507.05915 [hep-ex] ATLAS Collaboration, arXiv:1606.01133 [hep-ex] ALICE Collaboration, arXiv:1509.08734 [nucl-ex]

G. Apollinari, I. Béjar Alonso, O. Brüning, M. Lamont, and L. Rossi, 10.5170/CERN-2015-005
G. Apollinari, O. Brüning, T. Nakamoto and L. Rossi, arXiv:1705.08830 [physics.acc-ph] In ATLAS/CMS tracking acceptance

~ 10 000 charged tracks

~ 750 charged tracks for Run 3~ 5 000 charged tracks at HL-LHC

Not big difference at HL-LHC, and we expect vertex reconstruction to be affected more from pile-up than from track multiplicity (cf. b-tagging performance in top searches with *pp* and *p*Pb)

HI: Luminosity estimation

From $\frac{\mathrm{d}N_b}{\mathrm{d}t} = -\frac{N_b^2}{N_0\tau_b}$ > $N_b(t) = \frac{N_0}{1+\theta_t}$ with $\theta_t = \frac{t}{\tau_b}$

The luminosity at one interaction point is $L = k N_h^2$

where k is a parameter depending on the other beam properties (revolution frequency, number of bunches, emittance, width)

The integrated luminosity is thus $\Sigma(t) = L_0 \tau_b \frac{\theta_t}{1 + \theta_t}$

Turnaround time *t_a*: average time between two physics runs

Average luminosity L_{av}

$$t_{
m re}(t) = rac{\Sigma(t)}{t + t_{
m ta}}$$
 maximised $t_{
m for}$

for

$$t_{\rm opt} = \tau_b \sqrt{\theta_{\rm ta}}$$

$$L_{\rm ave}(t_{\rm opt}) = \frac{L_0}{\left(1 + \sqrt{\theta_{\rm ta}}\right)^2}$$

HI: Initial bunch intensity

The initial number of ions per bunch N_b is a key parameter for luminosity

Luminosity at one interaction point is proportional to N_b^2

We use the empirical expression

$$N_b \begin{pmatrix} A \\ Z \end{pmatrix} = N_b \begin{pmatrix} 208 \\ 82 \end{pmatrix} \left(\frac{Z}{82} \right)^{-p}$$

where p = 1 conservative assumption p = 1.9 optimistic assumption

J. Jowett, Workshop on the physics of HL-LHC, and perspectives at HE-LHC, (2018)

The XeXe run achieved p = 0.75after only few hours of tuning

HI: Result for different ions

p = 1.9

 $t_a = 2.5 h$

IFAE 2019

pp and PbPb are two extreme cases **Intermediate ions** could be interesting

			Cross section					Luminosity				
	M[GeV]	$\sqrt{s_{NN}}$ [TeV]	$\sigma_{ m EMD}$ [b]	$\sigma_{ m BFPP}$ [b]	$\sigma_{ m had} \ [m b]$	$\sigma_{ m tot} \ [m b]$	σ_W [nb]	$\frac{A^2 \sigma_W}{[\mu b]}$	$\frac{L_0}{\left[\frac{1}{\mu b s}\right]}$	$ au_b \ [ext{h}]$	$L_{ m ave} \ \left[1/\mu { m b~s} ight]$	$\frac{1}{[1]} N_{\rm N}/N_p$
$^{1}_{1}\mathrm{H}$	0.931	14.0	0	0	0.0710	0.07	56.0	0.0560	21.0×10^3	75.0	15.0×10^{3}	1
$^{16}_{8}{ m O}$	14.9	7.00	0.074	24×10^{-6}	1.41	1.48	28.0	7.17	94.3	6.16	35.2	0.30
$^{40}_{18}{ m Ar}$	37.3	6.30	1.2	0.0069	2.6	3.81	25.2	40.3	4.33	11.2	2.00	0.0957
$_{20}^{40}$ Ca	37.3	7.00	1.6	0.014	2.6	4.21	28.0	44.8	2.90	12.4	1.38	0.0735
$^{78}_{36}\mathrm{Kr}$	72.7	6.46	12	0.88	4.06	16.9	25.8	157	0.311	9.40	0.135	0.0253
$^{84}_{36}{ m Kr}$	78.2	6.00	13	0.88	4.26	18.1	24.0	169	0.311	8.77	0.132	0.0266
$^{129}_{54}$ Xe	120	5.86	52	15	5.67	72.67	23.4	390	0.0665	4.73	0.0223	0.0103
$^{208}_{82}{\rm Pb}$	194	5.52	220	280	7.8	508	22.1	955	0.0136	1.50	2.59×10^{-1}	3 0.0029
											Î	
			W boson								:	# events
			production								w.r.t.	
Cross									proton			
section										runs		

M. Lucente (UCLouvain)

38

Example: SM tests with Heavy lons

tt cross section measurement in pp and pPb collisions

CMS Collaboration, arXiv:1709.07411 [nucl-ex]

Example: BSM tests with Heavy lons

Testing axion-like particles with ultra-peripheral heavy-ion collisions

S. Knapen, T. Lin, H. K. Lou and T. Melia, arXiv:1607.06083 [hep-ph]

$$\mathcal{L}_a = \frac{1}{2} (\partial a)^2 - \frac{1}{2} m_a^2 a^2 - \frac{1}{4} \frac{a}{\Lambda} F \widetilde{F}$$

The photon-photon luminosity is enhanced by Z⁴ w.r.t. proton collisions

Nuclei do not fragment in the process

Axion-like particles with Heavy Ion collisions

S. Knapen, T. Lin, H. K. Lou and T. Melia, arXiv:1607.06083 [hep-ph]

Signal and background simulation

Expected sensitivity

1 nb⁻¹: current PbPb run 10 nb⁻¹: HL PbPb run

PbPb searches can provide stronger limits w.r.t. *pp* ones