

PRIMA MISURA DIRETTA DI DPS NELLO STATO FINALE DI DUE BOSONI W DELLO STESSO SEGNO CON L'ESPERIMENTO CMS A $\sqrt{s} = 13$ TEV

Valentina Mariani per la Collaborazione CMS

TIME TALE AND A STATE OF THE ST

INDICE

• Introduzione

- DPS collisioni partoniche doppie:
 - Cosa sappiamo dalla teoria
 - Stato dell'arte sperimentale
- Perchè il canale WW stesso segno
- Misura fatta in CMS a 13 TeV:
 - Dati 2016
 - Combinazione di dati 2016 e 2017
- Conclusioni

INDICE

• Introduzione

- DPS collisioni partoniche doppie:
 - •Cosa sappiamo dalla teoria
 - •Stato dell'arte sperimentale
- o Perchè il canale WW stesso segno
- Misura fatta in CMS a 13 TeV:
 - •Dati 2016
 - •Combinazione di dati 2016 e 2017
- Conclusioni

COLLISIONE PROTONE - PROTONE

Interazione principale Radiazione (ISR/FSR) Jet Frammentazione/ Adronizzazione Fascio non interagente (BR)

4

COLLISIONE PROTONE - PROTONE

INFN

Interazione principale Radiazione (ISR/FSR) Jet Frammentazione/ Adronizzazione Fascio non interagente (BR) Interazioni Multiple (MPI)

Molte interazioni a

MPI in dinamica soffice descrivono bene l'attività adronica osservata nello stato finale, rinormalizzano la sezione d'urto totale p-p, l'ipotesi è sostenuta dalle evidenze sperimentali.

Frazione di momento di un partone interagente

Scale di

i due partoni

fattorizzazione

(x di Bjorken)

MPI in Dinamica Forte – Per Interazioni Partoniche Doppie (**DPS**) si intendono due interazioni partoniche forti indipendenti nella stessa collisione pp.

Processo interessante per investigare la struttura interna del protone e la dinamica partonica e come fondo non trascurabile nella ricerca di nuova fisica.

MPI in Dinamica Forte – Per Interazioni Partoniche Doppie (**DPS**) si intendono due interazioni partoniche forti indipendenti nella stessa collisione pp.

Processo interessante per investigare la struttura interna del protone e la dinamica partonica e come fondo non trascurabile nella ricerca di nuova fisica.

Per due processi identici e sotto particolari assunzioni si ha:

$$\sigma_{DPS}^{incl}(s) = \frac{1}{2} \int d^2\beta (A(\beta))^2 (\sigma^{incl})^2 \sim 1 \text{ pb per WW (inclusivo)}$$

La dipendenza dal parametron di impatto β contiene le correlazioni non note e viene scritto per convenzione come l'inverso di una sezione d'urto effettiva:

$$\sigma_{eff} = \frac{1}{2} \frac{(\sigma^{incl})^2}{\sigma_{DPS}^{incl}}$$

STATO DELLE MISURE SPERIMENTALI

Tipicamente la produzione via interazione partonica singola (SPS) prevale sul DPS.

- -> DPS è quindi un processo raro e le misure sono finora modello-dipendenti (jet):
 - Molta statistica necessaria
 - Strategia di analisi che isoli DPS da SPS

PERCHÈ LO STATO FINALE WW DELLO STESSO SEGNO?

Canale preferenziale: due bosoni W dello stesso segno (ssWW)

• **Firma molto chiara** dello stato finale leptonico, selezionando $W \rightarrow \ell \nu$, con $\ell = e, \mu$ per avere una buona purezza

• La produzione via **SPS è soppressa** così che si ha $\sigma_{SPS} \sim \sigma_{DPS}$

DPS IN SSWW: STATO DELL'ARTE

\sqrt{s} = 13 TeV con dati 2016

Stato finale $WW \rightarrow \ell v \ell v \ (\ell = e, \mu)$

È stata usata un'analisi multivariata (BDT) allenata a distinguere il fondo maggiore (WZ) dal segnale.

uu channel $e\mu$ channel Same sign leptons Leading lepton $p_T > 25 \text{ GeV}$ Subleading lepton $p_T > 20 \text{ GeV}$ $p_T^{miss} > 15 \text{ GeV}$ $N_{iets} < 2$ $N_{b-iets} = 0$ $|\eta| < 2.4$ $|\eta| < 2.5$ Veto on additional lepton Veto on hadronic τ leptons expected observed $\sigma_{\mathrm{DPSWW}}^{\mathrm{pythia}}$ 1.64 pb $1.09^{+0.50}_{-0.49}~{
m pb}$ $\sigma_{\mathrm{DPSWW}}^{\mathrm{factorized}}$ 0.87 pb significance for $\sigma_{\text{DPSWW}}^{\text{pythia}}$ 3.27σ 2.23σ significance for $\sigma_{\text{DPSWW}}^{\text{factorized}}$ 1.81σ UL in the absence of signal < 0.97 pb < 1.94 pb

Primo segnale di DPS nello stato finale ssWW -> bassa sensitività per una misura diretta.

PAS FSQ-16-009 (2017)

L'analisi è stata ripetuta combinando dati 2016 e 2017 introducendo alcuni miglioramenti:

L'analisi è stata ripetuta combinando dati 2016 e 2017 introducendo alcuni miglioramenti:
 Selezione e identificazione dei leptoni più stringenti -> nuovi calcolo del contributo dei leptoni «fake»

Il contributo da leptoni misidentificati viene valutato nella regione di controllo in funzione di pT e η e poi estrapolato alla regione di segnale.

L'analisi è stata ripetuta combinando dati 2016 e 2017 introducendo alcuni miglioramenti:
 Selezione e identificazione dei leptoni più stringenti -> nuovi calcolo del contributo dei leptoni «fake»

• Una seconda BDT allenata su i leptoni misidentificati

L'analisi è stata ripetuta combinando dati 2016 e 2017 introducendo alcuni miglioramenti:
 Selezione e identificazione dei leptoni più stringenti -> nuovi calcolo del contributo dei leptoni «fake»

- Una seconda BDT allenata su i leptoni misidentificati
- Campioni MC differenti per la modellizzazione del segnale

Differenti generatori e tuning sono in ottimo acccordo nella descrizione del segnale -> **DPS è ben descritto** dai MC.

L'analisi non è dipendente dal modello.

RISULTATI (I)

Combinazione dei dati 2016 e 2017: ~77 fb⁻¹ di luminosità integrata.

-> 4921 eventi nei due dataset

	$\mu^+\mu^+$	$\mu^{-}\mu^{-}$	$\mathrm{e}^+\mu^+$	$e^-\mu^-$
nonprompt	141.80 ± 11.91	117.68 ± 10.85	461.69 ± 21.49	411.15 ± 20.28
WZ	536.99 ± 23.17	328.49 ± 18.12	833.52 ± 28.87	543.05 ± 23.30
ZZ	34.74 ± 5.89	13.49 ± 3.67	48.44 ± 6.96	23.24 ± 4.82
Wγ*	133.08 ± 11.54	117.97 ± 10.86	255.47 ± 15.98	226.92 ± 15.06
rares	43.62 ± 6.61	$\textbf{37.70} \pm \textbf{6.14}$	70.96 ± 8.42	65.66 ± 8.10
convs	_	_	17.02 ± 4.13	17.13 ± 4.14
charge flips	_	—	131.44 ± 11.46	104.23 ± 10.21
background	890.23 ± 29.84	615.33 ± 24.84	1818.54 ± 42.64	1391.38 ± 37.30
DPS WW	56.79 ± 7.54	28.85 ± 5.37	76.50 ± 8.75	40.14 ± 6.34
observed	926	675	1840	1480

RISULTATI (II)

CMS Istitute Nazionale di Fisica Nucleare

Da un fit sulle distribuzioni di BDT si ottengono:

• σ_{DPSWW}^{PYTHIA} assumendo che il segnale segua la cinematica e la sezione d'urto di PYTHIA

• $\sigma_{DPSWW}^{factorized}$ assumendo che il segnale segua la cinematica di PYTHIA ma la sezione d'urto via "pocket formula"

• σ_{DPSWW}^{obs} la sezione d'urto osservata in pb assumendo il segnale con cinematica di PYTHIA ma senza assunzioni sulla sezione d'urto

	expected	observed
$\sigma_{ m DPSWW}^{ m pythia}$	1.92 pb	$1.41^{+0.40}$ pb
$\sigma_{ ext{DPSWW}}^{ ext{factorized}}$	0.87 pb	$1.41_{-0.40}$ PD
significance for $\sigma_{ m DPSWW}^{ m pythia}$	5.37 σ	3.87σ
significance for $\sigma_{ m DPSWW}^{ m factorized}$	2.51 σ	5.67 0
$\sigma_{ m effective}$		$12.67^{+5.01}_{-2.92}\mathrm{mb}$

La prima evidenza di DPS nella produzione di due bosoni W.

CONCLUSIONI E PROSPETTIVE FUTURE

- Incoraggianti risultati nel 2016 ma limitati dalla statistica
- Analisi ripetuta combinando i dati raccolti da CMS nel 2016 e 2017 (77fb⁻¹) con importanti miglioramenti alla strategia
- Prima misura diretta di collisioni partoniche doppie nella produzione di due bosoni W dello stesso segno

CONCLUSIONI E PROSPETTIVE FUTURE

- Incoraggianti risultati nel 2016 ma limitati dalla statistica
- Analisi ripetuta combinando i dati raccolti da CMS nel 2016 e 2017 (77fb⁻¹) con importanti miglioramenti alla strategia
- Prima misura diretta di collisioni partoniche doppie nella produzione di due bosoni W dello stesso segno

• Possibile raggiungere le 5σ analizzando l'intera statistica del Run2 2016-2018 (~130 fb⁻¹)

 Le simulazioni in configurazione Fase-2 (nuovi rivelatori e ~3ab⁻¹) mostrano la possibilità di essere sensibili alla misura di correlazioni partoniche angolari, al momento inaccessibili.

V. Mariani - IFAE 2019

BACKUP

EVIDENZE DI MPI

La maggior parte dei generatori non è in grado di descrivere simultaneamente l'evoluzione dell'energia in funzione di $\rho(0)$ e <pT>.

Ipothesys of Multiple Particle Interaction can justify those discrepancies.

09/04/19

V. Mariani - IFAE 2019

SELEZIONE OGGETTI

Leptons

- Pair of $\mu^{\pm}\mu^{\pm}$ or $e^{\pm}\mu^{\pm}$, with leading (sub-leading) lepton $p_{\rm T} > 25/20$ GeV
- Three levels of lepton selection : loose \rightarrow fakeable \rightarrow tight
- lepton-MVA discriminator \rightarrow trained against the fakes (ttH group)
- Lepton & jet-related variables used for training
- Leptons selected using loose id & isolation cuts to train lepton-MVA \rightarrow loose sel.
- Fakeable lepton sel \rightarrow for the estimation of fake rates

SELEZIONE OGGETTI

type-1 corrected $p_{\rm T}^{\rm miss} > 15~{\rm GeV}$ high signal efficiency

Jets

- ak4pfjetschs cleaned w.r.t. fakeable leptons & taus
- bjets identified using loose WP of CSVv2 (Deep CSV) algorithm for 2016 (2017)
- jets (b-jets) $p_{\rm T} > 30$ (25) GeV; $|\eta| < 2.4$
- 0/1 jets; veto on b-jets

Filter name	Applied to data	Applied to simulation
Flag.goodVertices	1	√
Flag.globalTightHalo2016Filter	~	~
Flag_HBHENoiseFilter	1	~
Flag_HBHENoiseIsoFilter	1	~
Flag.EcalDeadCellTriggerPrimitiveFilter	1	~ <
Flag.BadPFMuonFilter	~	// /
Flag.BadChargedCandidateFilter	1	1 S V
Flag.eeBadScFilter	1	- / /
Flag.ecalBadCalibFilter	12	$ \setminus $

- veto on τ_{had} .
- cleaned w.r.t loose leptons
- $p_{\rm T} > 20$ GeV, $|\eta| < 2.3$
- old decay mode finding + tau id MVA with isolation cone size R=0.3

• Double lepton^{*} || Single lepton^{**} triggers \rightarrow maximum possible trigger efficiency

Triggers

*Loosely isolated muons & electrons ightarrow p $_{
m T}$ thresholds [8,12,17,23] GeV with & without dZ filter

**wider range of lepton p_T thresholds starting from 12 GeV Object & trigger selections identical to ttH analysis \rightarrow profit from their expertise DATI & MC

DoubleMuon, MuonEG, SingleElectron & SingleMuon datasets $\rightarrow 2016^* \& 2017^{**} \rightarrow 36+41.4 \text{ fb}^{-1}$

Sample name signal /WWTo2L2Nu_DoubleScattering_13TeV-herwigpp, /WW-DoubleScattering_13TeV-pythia8-TuneCP5/1 /WWTo2L2Nu_DoubleScattering_13TeV-pythia8/ backgrounds /DYJetsToDL_M-10to50_TuneCP5_13TeV-madgraphMLM-pythia8/1 /DYJetsToLLM-50_TuneCP5_13TeV-amcatnloFXFX-pythia8/12 /WWTo2L2Nu_NNPDF31_TuneCP5_13TeV-powheg-pythia8/1 /WZTo3LNu_TuneCP5_13TeV-amcatnloFXFX-pythia8/3 /ZZTo4L-13TeV.powheg.pythia8/3 /WWW_4F_TuneCP5_13TeV-amcatnlo-pythia8/0 /WJetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8/1 /TTJets_DiLept_TuneCP5_13TeV-madgraphMLM-pythia8/0 /ttZJets_TuneCP5_13TeV_madgraphMLM_pythia8/3 /ST_tW_top_5f_NoFullyHadronicDecays_TuneCP5_PSweights_13TeV-powheg-pythia8/1 /ST_tW_anttop_5f_NoFullyHadronicDecays_TuneCP5_PSweights_13TeV-powheg-pythia8/1 /WGToLNuG_TuneCP5_13TeV-madgraphMLM-pythia8/4

- Signal sample (fully-leptonic) simulated using PYTHIA 8 & HERWIG++($\sigma_{DPS} = 0.1729$ pb, which is, somewhat, random)
- Estimation of WZ, diboson & triboson background processes from simulations for both 2016 & 2017
- Contributions from non-prompt leptons estimated from the data
- W+njets & DY+jets samples for cross-check purposes, only
- MC samples → normalized to highest order cross sections

* [B-H] -03Feb2017-v1/MINIAOD; Cert_271036-284044_13TeV_23Sep2016ReReco_Collisions16_JSON.txt ** [B-F] -17Nov2017-v1/MINIAOD; Cert_204027_206462_12TeV_E0V2017PeBage_Collisions17_JSON_w1_twt

Cert_294927-306462_13TeV_EOY2017ReReco_Collisions17_JSON_v1.txt

VARIABILI INPUT PER LA BDT

VARIABILI INPUT PER LA BDT (2016+2017)

Fake Rate

Fake & prompt ratios in different bins of $\eta(\mu)$ & the corresponding fits

- $m_T \rightarrow$ used to extract scale factors for ewk subtraction
- lepton-mva to derive fake/prompt ratios

Nice data/MC agreement in fakes measurement region after pileup reweighting and accounting for trigger prescales

Prompt Ratios (70-99%): fitted using an error function

SISTEMATICA - FAKE RATE

- Varied FR as a function of p_T (5–12.5% from 10–50 GeV) & η (5–21% from 0–2.5) of the fakeable lepton
- Difference in the shapes is taken as the systematic uncertainty

- Loose & tight identification efficiencies measured using $Z\to l^+l^-$ events in the data and MC for each cut
- Loose identification scale factors for muons pretty close to 1 & 0.94 for electrons

- Loose selection scale factors taken from respective POGs
- Tight-to-Loose selection efficiency > 95%; scale factors in the range 0.9-1 for both leptons

Trigger

- Trigger efficiency measured with unbiased MET trigger in the data
- Trigger efficiency ~ 95% (92%) for dimuon (electron-muon) cases \rightarrow consistent b/w data & simulations (scale factors ~1)

uncert.	2016	2017	lnN/shape	correlated					
				µµ/еµ	2016/2017				
applied to all mc samples									
luminosity	2.5%	2.3%	lnN	yes	no				
trigger	1%(µµ), 2%(eµ)	2%	lnN	not for 2016 yes for 2017	no				
loose µ	2% per μ (lnN)	variations in sfs	2016: lnN 2017:shape	for same flav. leptons	no				
tight μ	3%	2% per µ	lnN	for same flav. leptons	yes				
loose el	2%	variations in sfs	2016: lnN 2017:shape	for same flav. leptons	no				
tight el	3%	3%	lnN	for same flav. leptons	yes				
jecs on njets	2%	2%	lnN	yes	yes				
pileup	1%	1%	lnN	yes	yes				
		process specific	2						
signal	(alt) shape from diff. mc samples			yes	yes				
wz	16% lnN + (alt) shape from diff. mc samples			yes	yes				
fakes_norm	25% for $\mu\mu$, 40% for $e\mu$		lnN	no	yes				
fakes_shape	jet pT (40,50 GeV) + slope of the fit (10%)	pT-eta dependent Variations in fr	shape	yes	yes				
wγ*	50% lnN, 5% shape			yes	yes				
ZZ	20% lnN, 5% shape			yes	yes				
rares	50% lnN, 5% shape			yes	yes				
convs	50% lnN, 5% shape			yes	yes				
el. charge flips	ips 30% (eµ only)			yes	yes				