

RECENT RESULTS ON SINGLE VECTOR BOSON PLUS JETS PRODUCTION AT CMS

Federico Vazzoler, on behalf of the CMS Collaboration

Incontri di Fisica delle Alte Energie, Napoli, 09 Aprile 2019.

MOTIVATION

- Precision measurements of V+jets differential production cross sections provide rigorous test of the SM:
 - Inputs for constraining PDFs, important to reduce uncertainties in many relevant cross sections measurements
- 2. V+jets measurements compared with Monte Carlo predictions:
 - Improve MC description of experimental data and higher order theoretical calculations
- 3. Important background for SM and BSM events (high boson p_T and N_{jets}):
 - Single top, tt, VBF, WW scattering, H boson production, ...

SMP-16-005

<u>SMP-16-015</u>

SMP-16-003

<u>SMP-17-014</u> SMP-14-020 SMP-14-010

STATE OF THE ART @ RUN 2

SMP-16-005 \rightarrow W+jets SMP-17-014 \rightarrow W+c SMP-14-020 \rightarrow W+b

SMP-16-015 \rightarrow Z+jets SMP-14-010 → Z+b

γ+jets

SMP-16-003 $\rightarrow \gamma$ +jets

All results at: http://cern.ch/go/pNj7

THEORETICAL PREDICTIONS FOR V+jets CROSS SECTIONS

MadGraph5_aMC@NLO (ME) + PYTHIA8 (PS):

- LO: up to 4 partons, kT-MLM matching, NNPDF 3.0 LO PDF, CUETP8M1 PYTHIA tune
- NLO: up to 2 partons, FxFx matching, NNPDF 3.0 NLO PDF, CUETP8M1 PYTHIA tune
- · Geneva 1.0-RC2 (ME) + PYTHIA8 (PS):
 - NNLO DY production + NNLL higher order resummation
 - Only for Z+jets processes
- Z/W+1 jet NNLO calculation:
 - Using MCFM

CT14 PDF (Z) NNPDF 3.0 NNLO (W)

Pileup contribution simulated with additional minimum-bias events superimposed on primary event

Samples	0 ј	1 j	2 j	3 ј	4 j	> 4 j
LO MG5_aMC	LO	LO	LO	LO	LO	PS
NLO MG5_aMC	NLO	NLO	NLO	LO	PS	PS
Geneva	NLO	NLO	LO	PS	PS	PS
Z/W+1 jet @ NNLO	_	NNLO	NLO	LO	_	_

W+jets

Njets

- pp collisions @13 TeV, 2.2 fb⁻¹ data (2015)
- Detector resolution corrected (unfolding)
- Dominant background: $t\bar{t}$ production (data-driven estimation)
- Other backgrounds: MC and data driven (QCD)
- Differential cross-section as a function of $N_{jets},$ jet p_T and eta, jets $H_T,$ angular correlations between muon and jet(s)

Jets:

anti- $kT \ (R = 0.4)$ $p_T(j) > 30 \text{ GeV}$ $|\eta| < 2.4$ $\Delta R(jet, \mu) > 0.4$

W+jets

рт(j)

LO MG5_aMC: underestimation at low p_T

NLO MG5_aMC + W+1j@NNLO: good description of measurements

 $\Delta \phi(\mu,j)$

Δφ: sensitive to
implementation of particle
emission and other
nonperturbative effects
modelled by PS algorithm

LO MG5_aMC + NLO MG5_aMC + W+1j@NNLO: good modelling

ΔR(μ,j)

AR: sensitive to EW radiative production of W boson

LO MG5_aMC + NLO MG5_aMC + W+1j@NNLO: decent modelling

Z+jets

Leptons:

 $p_T(l) > 20 \text{ GeV}$ $|\eta| < 2.4$ $M_{ll} = 91 \pm 20 \text{ GeV}$

Jets:

anti- $kT \ (R = 0.4)$ $p_T(j) > 30 \ GeV$ $|\eta| < 2.4$ $\Delta R(jet, l) > 0.4$

- pp collisions @13 TeV, 2.2 fb⁻¹ data (2015)
- Correction for detector resolution (unfolding)
- Dominant background: $t\bar{t}$ production (data-driven estimation)
- Other backgrounds: from MC
- Differential cross-section as a function of Z boson p_T, jet p_T and eta, transverse momenta balance, jet-Z balance (JZB)

рт **(**Z)

p⊤ (leading j)

GENEVA: shape of p_T (leading j) well modelled. H_T underestimated. p_T (Z) well modelled except for the central region

NLO MG5_aMC + Z+1j@NNLO: good description of the observables

LO MG5_aMC: distributions differ significantly

NLO needed to describe data

- Activity in forward region (dominant).
- Gluon radiation in central region. 2.

γ+jets

<u>SMP-16-003</u>

Photon:

$$\begin{split} E_T^{\gamma} &> 190 \; GeV \\ &|\eta| < 2.5 \\ H/E < 0.08 \; (0.05) \\ &Iso_{chg} + Iso_{neu} \\ &\sigma_{i\eta i\eta} < 0.015 \; (0.045) \end{split}$$

Jet:

anti- $kT \ (R = 0.4)$ $p_T(j) > 30 \ GeV$ $|\eta| < 2.4$ $\Delta R(j,l) > 0.4$

- pp collisions @13 TeV, 2.26 fb⁻¹ data (2015).
- Correction for detector resolution (unfolding).
- Dominant background: QCD multijet production (EM decays of neutral hadrons).
- MVA analysis: photon yield extracted from BDT templates of signal and background (control region).
- Measured cross-sections compared to NLO QCD calculations JETPHOX 1.3.1

γ+jets

$d^{3}\sigma / dE_{T}^{\gamma} dy^{\gamma} dy^{jet}$

Theory / Data

Measured cross-sections wrt. CMS measurements @ 7 TeV:

- Cross-sections increased by factor 3-5.
- Extension of the ET range from 300 GeV to 1 ٠ TeV.

Cross-sections in agreement with NLO JETPHOX NNPDF3.0 predictions in all kinematic regions.

Sensitivity to gluon density function of wide range (x, Q²).

Ratio of theoretical prediction with various PDF sets also studied.

> Good agreement between data and theory + <u>new NNLO calculation</u> = sensitivity to constrain gluon PDF

- pp collisions @13 TeV, 35.7 fb⁻¹ data (2016)
- W+c measurement: probe proton strange quark content
- Dominant background: cc from gluon splitting. Data-driven reduction using charge sign of W and D*
- Measured cross-section compared to NLO QCD predictions (MCFM) using several PDF sets
- Good agreement except for ATLASepWZ16nnlo: do not support hypothesis of enhanced strange quark contribution in proton sea (ATLAS, <u>dx.doi.org/10.1140/epjc/s10052-017-4911-9</u>)

- $p_T(\mu) > 26 \ GeV$
- $|\eta| < 2.4$
- $M_T > 50 \ GeV$

D*(2010):

 $p_T(D^*) > 5 \ GeV$

D⁰ reconstruction.

D* identification: mass difference method.

W+2b

<u>SMP-14-020</u>

Leptons:

 $p_T(l) > 30 \text{ GeV}$ $|\eta| < 2.1$

Jets:

anti-kT (R = 0.4) CSV b-tagging $p_T(j) > 25 \ GeV$ $|\eta| < 2.4$ $\Delta R(jet, l) > 0.4$

σ (W+2b)

- pp collisions @8 TeV, 19.8 fb⁻¹ data (2012)
- W+2b measurement: probe proton bottom quark content
- Leptonic decays (µ or e) + 2b jets.

MΤ

- Dominant background: tt production (data-driven estimation)
- Measured cross-section compared to LO predictions using several flavour scheme
- Good agreement between data and theory

<u>SMP-14-010</u>

Leptons:

 $p_T(l) > 20 \text{ GeV}$ $|\eta| < 2.4$ $M_{ll} = 91 \pm 20 \text{ GeV}$

Jets:

anti-kT (R = 0.4) CSV b-tagging $p_T(j) > 30 \; GeV$ $|\eta| < 2.4$ $\Delta R(jet, l) > 0.4$

- pp collisions @8 TeV, 19.8 fb⁻¹ data (2012)
- Z+b measurement: probe proton bottom quark content
- Leptonic decays (µ or e) + 2b jets
- Dominant background: tt production (data-driven estimation)
- Measured cross-section compared to LO(NLO) predictions using several flavour scheme
- Good agreement between data and theory

CONCLUSIONS

- 1. CMS has provided a **broad range** of V+jets measurements exploiting **8-13 TeV** pp collisions at LHC.
- 2. High precision achieved in inclusive and differential crosssections using new experimental methods and larger datasets.
- 3. Measurements generally in good agreement with with predictions (NLO ME calculations, PS models and N(NLO) fixed-order theoretical calculations).
- 4. Future improvements:
 - Trying to go beyond NLO. testing new generations of MC (DIRE, VINCIA, GENEVA, SHERPA)
 - Constrain systematic uncertainties
 - Improve unfolding and statistical techniques

BACKUP

THE CMS EXPERIMENT

THE CMS PARTICLE-FLOW ALGORITHM

Reconstruction and identification: combination of information from the various elements of the CMS detector:

- Energy of photons \rightarrow ECAL measurement.
- Energy of electrons → combination of electron momentum (tracker) + energy of the corresponding ECAL cluster + sum of all bremsstrahlung photons.
- **Muon momentum** \rightarrow track curvature in tracker and muon system.
- Energy of charged hadrons \rightarrow momentum (tracker) + matching ECAL and HCAL energy deposits. Correction for response function of the calorimeters to hadronic showers.
- Energy of neutral hadrons → corrected ECAL + HCAL energy.

THE CMS PARTICLE-FLOW ALGORITHM

