Decadimenti semileptonici del B a LHCb

Fabio Ferrari per conto della Collaborazione LHCb

Università di Bologna e INFN IFAE 2019 Napoli, 8-10 Aprile 2019

Le regole del gioco

⁽¹⁾Vedi poster di Carmen Giugliano e Simone Meloni

- ✓ Possibili misure di alta precisione
 - Decine di milioni di decadimenti semileptonici di adroni B ricostruiti durante Run 1 e Run 2 del LHC
- Previsioni teoriche molto più precise rispetto ai decadimenti adronici
- ✓ Possibilità di studiare possibili violazioni dell'universalità leptonica nelle transizioni $b \rightarrow c l v^{(1)}$
- X (Almeno) un neutrino presente → no ricostruzione della massa invariante e di altre quantità cinematiche
 - Necessario l'impiego di tecniche approssimate
- XNecessari grandi campioni di eventi simulati per calcolare efficienze ed ottenere forme da utilizzare negli adattamenti ai dati

Transizioni $b \rightarrow c l v$

1/1

C

Ouverture

- Nel Modello Standard gli accoppiamenti elettrodeboli dei leptoni carichi sono identici → universalità leptonica
- Test: il rapporto delle frazioni di diramazione di stati finali che differiscono solo per il sapore del leptone

$$R(X_b) = \frac{BR(X_b \to X_c \tau^+ \nu_{\tau})}{BR(X_b \to X_c \mu^+ \nu_{\mu})}$$

- In questa presentazione
 - $R(D^*)$ adronico: $B^0 \to D^{*-}l^+\nu$, con $\tau^+ \to 3\pi^{\pm}(\pi^0)\overline{\nu_{\tau}}^{(1)}$
 - $R(D^*)$ muonico: $B^0 \to D^{*-}l^+\nu$, con $\tau^+ \to \mu^+\nu_\mu\overline{\nu_\tau}$ ⁽²⁾

Run1 (3 fb⁻¹)

- $R(J/\psi): B_c^+ \to J/\psi l^+ \nu, \operatorname{con} \tau^+ \to \mu^+ \nu_\mu \overline{\nu_\tau}^{(3)}$
- Nuove idee...
- Strategie complementari → differenti sfide sperimentali ed incertezze sistematiche

$R(D^*)$ adronico

- Canale di normalizzazione: $B^0 \rightarrow D^{*-} 3\pi^{\pm}$
 - Stesso stato finale visibile
- Quantità da misurare

$$K(D^*) \equiv \frac{BR(B^0 \to D^{*-}\tau^+\nu_{\tau})}{BR(B^0 \to D^{*-}3\pi^{\pm})} = \frac{\varepsilon_{norm}}{\varepsilon_{sig}} \frac{N_{sig}}{N_{norm}} \frac{1}{BR(\tau^+ \to 3\pi^{\pm}\pi^0\overline{\nu_{\tau}})}$$

- N_{sig} ottenuto da un adattamento 3D ai dati (q^2 , vita media del τ , risposta classificatore multivariato)
- N_{norm} ottenuto da un adattamento alla massa invariante $D^{*-}3\pi^{\pm}$
- Distanza di volo del τ sfruttata per rigettare il fondo

$R(D^*)$ adronico

- Fondo principale: $X_b \rightarrow D^{*-} 3\pi^{\pm} X$
 - Circa 100 volte più abbondante del segnale
 - Soppressione: il vertice di decadimento del τ deve essere almeno $4\sigma_{\Delta z}$ a valle del vertice del *B*
- Fondi rimanenti: decadimenti con doppio charm: $X_b \rightarrow D^*D_s^+X, X_b \rightarrow D^*D^+X, X_b \rightarrow D^*D^0X$
 - informazione sulla struttura risonante nel sistema $3\pi^{\pm} \rightarrow$ classificatore multivariato

6

LHCD

INFN

$R(D^*)$ adronico

$R(D^*)$ muonico

- Stesso stato finale visibile $(D^*\mu)$
- Impulso del *B* ottenuto scalando l'impulso longitudinale visibile per $m(B^0)/m(D^*\mu)$
- Adattamento ai dati 3D $(q^2, m_{miss}^2, E_{\mu}^*)$ per estrarre il numero di eventi di segnale

$$R(D^*) = \frac{BR(B^0 \to D^{*-}\tau^+\nu_{\tau})}{BR(B^0 \to D^{*-}\mu^+\nu_{\mu})}$$

8

$R(D^*)$ muonico

•
$$N(B^0 \to D^{*-} \mu^+ \nu_{\mu}) = 363k$$

- $N(B^0 \rightarrow D^{*-}\tau^+\nu_{\tau}) = 16k$
- Considerando anche il rapporto tra le efficienze dei due canali si ottiene

 $R(D^*) = 0.336 \pm 0.034$

Previsione teorica :

 $0.258 \pm 0.005^{(1)}$

2.3 σ al di sopra del Modello Standard

Compatibile con $R(D^*)$ adronico a < 1 σ

⁽¹⁾HFLAV

9

Data

 $B \rightarrow D^* \tau \nu$

 $B \rightarrow D^{**} l v$ $B \rightarrow D^* \mu v$ Combinatorial

 $B \rightarrow D^*H_c(\rightarrow lvX')X$

 $R(J/\psi)$

$$R(J/\psi) = \frac{BR(B_c^+ \to J/\psi\tau^+\nu_{\tau})}{BR(B_c^+ \to J/\psi\mu^+\nu_{\mu})}$$

✓ Stesso stato finale visibile $J/\psi\mu$

✓ Piccolo rateo di produzione del mesone B⁺_c, ma nessun fondo dovuto ai mesoni D

X Fattori di forma conosciuti con scarsa precisione

• Adattamento ai dati 3D $(m_{miss}^2, vita media B_c^+, istogramma 2D contenente q^2 e E_{\mu}^*)$ per estrarre il numero di eventi di segnale

$R(J/\psi)$

⁽¹⁾PLB 452 (1999) 129–136 ⁽¹⁾ Phys. Rev. D **73**, 054024

- Fondo principale
 - $X_b \rightarrow J/\psi h$, dove h è un adrone mal identificato \rightarrow soppresso con tagli sulle variabili di identificazione delle particelle

•
$$N(B_c^+ \to J/\psi \mu^+ \nu_{\mu}) = 19140 \pm 340$$

•
$$N(B_c^+ \to J/\psi \tau^+ \nu_{\tau}) = 1400 \pm 300$$

• Prima evidenza di questo decadimento

$R(J/\psi) = 0.71 \pm 0.17 \pm 0.18$ Previsione teorica : $[0.25, 0.28]^{(1)}$ 2σ al di sopra del Modello Standard

La caccia continua...

- Tensione col Modello Standard nel piano $R(D^*) - R(D)$ a ~3.7 σ
 - Nuovo risultato preliminare di Belle \rightarrow tensione a ${\sim}3.1\sigma$
- Le analisi sui dati dei Run 2 stanno procedendo e aiuteranno a rendere la situazione più chiara
- È possibile utilizzare altri canali di decadimento per testare sistemi dinamici diversi?

Nuove idee

_

_

 $R(D_s^{(*)})$

- Misura vita media del mesone B_s^0 ad LHCb \rightarrow possibile separare il contributo dei decadimenti $B_s^0 \rightarrow D_s^- \mu^+ \nu_\mu \in B_s^0 \rightarrow D_s^{*-} \mu^+ \nu_\mu$
- Misura dei rapporti di diramazione di questi canali e dei fattori di forma (FF) del D_s^(*) → grande importanza
 - Test delle predizioni teoriche della QCD su reticolo
 - Test della simmetria SU(3) rispetto ai decadimenti $B^0 \rightarrow D^{(*)-} \mu^+ \nu_{\mu}$
 - Quantità **fondamentali** per la determinazione di $R(D_s^{(*)})$
- Due approcci
 - Misura dei FF del D_s^{*-} con decadimenti $B_s^0 \rightarrow D_s^{*-} (\rightarrow D_s^- \gamma) \mu^+ \nu_{\mu}$
 - Misura dei FF e rapporti di diramazione del $D_s^{(*)-}$ con decadimenti $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$

CINFN LHCD

14

$$B_s^0 \rightarrow D_s^{*-} (\rightarrow D_s^- \gamma) \mu^+ \nu_{\mu}$$

- Adattamento alla massa invariante $D_s^- \gamma$ per sottrarre il fondo
- Neutrino mancante \rightarrow ricostruzione del q^2 impedita
 - Algoritmo di regressione per determinare il q²
- Adattamento alla massa corretta in intervalli di q^2

$$m_{corr} \equiv \sqrt{m^2(D\mu) + p_{\perp}^2(D\mu) + p_{\perp}(D\mu)}$$

1.6 fb⁻¹ del

 $B_s^0 \rightarrow D_s^{*-} (\rightarrow D_s^- \gamma) \mu^+ \nu_{\mu}$

- Il rateo di decadimento differenziale dipende dai FF
 - Parametrizzazione di Caprini-Lellouch-Neubert (CLN) $\frac{d\Gamma}{dq^2} \propto K \cdot (1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3), \text{dove } z = f(q^2)$
 - Estrazione del FF dalla distribuzione del numero di eventi di segnale in funzione di q^2
- Risultati preliminari

$$\rho^2 = x \, xx \pm 0.06 \pm 0.04$$

- Prossimi passi
 - Studio del canale $B_s^0 \to D_s^{*-} \tau^+ \nu_{\tau}$ per misurare $R(D_s^*)$

 $B_s^0 \rightarrow D_s^{(*)} \mu^+$

Vedi poster di Daniele Manuzzi

- Neutrino mancante ricostruzione del q^2 impedita
 - Utilizzo di una variabile correlata al q^2 che sia sensibile al FF $\rightarrow p_{\perp}(D)$
- Adattamento 2D $(m_{corr}, p_{\perp}(D))$ per la determinazione dei FF e dei rapporti di diramazione
 - Canale di normalizzazione: $B^0 \rightarrow D(\rightarrow KK\pi)\mu\nu X$
- Validazione strategia: $B^0 \rightarrow D(\rightarrow K\pi\pi)\mu\nu X$ (statistica ~ 20 volte maggiore)
- Analisi in stato avanzato

CINFN

Conclusioni

Backup

Tutto possibile grazie a.

J. Instrum. 3 (2008) S08005

