IFAE

10th April 2019

UNIVERSITÀ DEGLI STUD DI MILANO

New results of pentaquark searches in LHCb

Elisabetta Spadaro Norella on behalf of LHCb

Università di Milano and INFN Milano

Pentaquark searches at LHCb

• $\Lambda_{b} \rightarrow J/\psi p K$ analysis:

- In 2015 discovery of 2 states of $P_c^+ \rightarrow J/\psi p$ with Run1
- TODAY: new results Run1 + Run2
- $B^{0}_{(s)} \rightarrow J/\psi p \bar{p}$ analysis:
 - \circ First observation with 2011-2016 data accepted on PRL
 - \circ Independent channel for pentaquarks in J/ ψ p
 - Simple model with no other resonances like Λ^*

IFAE 2019

Λ_b→J/ψpK Run1 + Run2 analysis

9x yield of 2015 analysis (~9 fb⁻¹) \rightarrow 246k events

Fit to m_{J/wp} invariant-mass distribution (full amplitude analysis in preparation)

 \rightarrow 3 narrow peaks clearly visible

Nominal fit model:

- 3 BW + high-order polynomial bkg
 - New P_c(4312)⁺!
 - Peak at 4450 MeV resolved in 2 narrower peaks
 - No sensitive to broad P_c(4380)⁺

Talk at Moriond, 26/03

Λ* reflections?

To be confirmed by amplitude analysis

Fit $m_{J/\psi p}$ invariant mass

Different fits:

- **Background parametrization**
- Λ^* composition:

 - Cut on m_{κ_p} >1.9 GeV: Λ^* in low region Weighted on $\cos\theta_{Pc}$: Λ^* for $\cos\theta_{Pc}$ >0

Other checks:

- fit with only P₂(4312)
- different selection
- toys for fitting approach using 6D amplitude model

Differences in Γ e M assigned as systematic uncertainties

IFAE 2019

Fit results

Parameters: M, Γ e rate

$$\mathcal{R} = \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ K \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}$$

• Event-by-event efficiency parametrization $\epsilon \rightarrow$ weights: $1/\epsilon$

$P(4312)^+$ $4311.9 \pm 0.7^{\pm 6.8}$ $9.8 \pm 2.7^{\pm 3.7}$ (< 27) $0.30 \pm 0.07^{\pm 0.34}$ LHCb-PAPE	·D-2010-017	
$1_{c}(-512)$ $-511.5 \pm 0.1_{-0.6}$ $5.6 \pm 2.1_{-4.5}$ (-21) $0.50 \pm 0.01_{-0.09}$ In prepara	tion	
$P_c(4440)^+ 4440.3 \pm 1.3^{+4.1}_{-4.7} 20.6 \pm 4.9^{+8.7}_{-10.1} (<49) 1.11 \pm 0.33^{+0.22}_{-0.10} .111 \pm 0.33^{+0.22}_{-0.20} .111 \pm 0.33^{+0.22}_{-0.20} .111 \pm 0.33^{+0$		
$P_{c}(4457)^{+} \begin{vmatrix} 4457.3 \pm 0.6^{+4.1}_{-1.7} \end{vmatrix} 6.4 \pm 2.0^{+5.7}_{-1.9} (<20) \end{vmatrix} 0.53 \pm 0.16^{+0.15}_{-0.13}$		
Widths consistent with		

Theoretical interpretation

LHCb-PAPER-2019-014 in preparation

Near threshold masses and narrow resonances favor the hypothesis of molecules of baryon-meson

 $\Sigma_c^+ \overline{D}^0$ $\Sigma_c^+ \bar{D}^{*0}$ Weighted candidates/(2 MeV) 200 data LHCb otal fit preliminary 1000 background 800 600 $P_{c}(4457)^{+}$ P_c(4440) P_c(4312)⁺ 200 4400 4450 4500 4550 4600 $m_{J/\psi p}$ [MeV]

Only **below** this molecule threshold

Two molecules: $\Sigma_c^+ D^0$, $\Sigma_c^+ D^{*0} \rightarrow 2$ states with different spin

BUT neither pentaquark tight-structure nor triangle diagrams are excluded

 \rightarrow Need an amplitude analysis for J^{P} quantum numbers

New pentaquark analysis: B⁰_(s)→J/ψpp̄ decay

- Candidate for pentaquark searches in $J/\psi p$ and $J/\psi \bar{p}$ and for glueball in pp system
- Both processes are suppressed due to Cabibbo and OZI suppression

• Limit on BR of B_s with no resonant structure:

$$\mathcal{B}(\bar{B}^0_s \to J/\psi p \bar{p}) \le 10^{-9}$$

Eur. Phys. J. C75 (2015), no. 3 101

New pentaquark analysis: B⁰_(s)→J/ψpp̄ decay

- Candidate for pentaquark searches in $J/\psi p$ and $J/\psi \bar{p}$ and for glueball in pp system
- Both processes are suppressed due to Cabibbo and OZI suppression

• Limit on BR of B_s with no resonant structure:

$$\mathcal{B}(\bar{B}^0_s \to J/\psi p \bar{p}) \le 10^{-9}$$

Eur. Phys. J. C75 (2015), no. 3 101

New pentaquark analysis: B⁰_(s)→J/ψpp̄ decay

First observation of $B^{0}_{(s)} \rightarrow J/\psi p\bar{p}$ decays with 2011-2016 data (5.2 fb⁻¹) arXiv:1902.05588

Mode	Yield
$B^0 \to J\!/\psi p \bar p$	256 ± 22
$B_s^0 \to J/\psi p \bar{p}$	609 ± 31

 $\mathcal{B}(B^0 \to J/\psi \, p\bar{p}) = (4.51 \pm 0.40 \text{ (stat)} \pm 0.44 \text{ (syst)}) \times 10^{-7},$ $\mathcal{B}(B^0_s \to J/\psi \, p\bar{p}) = (3.58 \pm 0.19 \text{ (stat)} \pm 0.33 \text{ (syst)}) \times 10^{-6},$

- BR of B_s: 2 order of magnitude higher than expected
- World's best single measurement of B_s and B^o masses

m(Bs) = 5366.85 ± 0.19 ± 0.13 MeV m(Bd) = 5279.74 ± 0.30 ± 0.10 MeV

• Amplitude analysis is ongoing with data till 2018 \rightarrow around twice the statistics

Conclusions

- Very interesting results with Run1 + Run2 \rightarrow 3 narrow peaks observed:
 - \circ P_c⁺(4312), P_c⁺(4440) and P_c⁺(4457)
- Amplitude analysis on this channel is ongoing to determine quantum numbers
- Analysis of $B^0_{(s)} \rightarrow J/\psi p \bar{p}$ can help distinguish among different models

Conclusions

- Very interesting results with Run1 + Run2 \rightarrow 3 narrow peaks observed:
 - \circ P_c⁺(4312), P_c⁺(4440) and P_c⁺(4457)
- Amplitude analysis on this channel is ongoing to determine quantum numbers
- Analysis of $B^0_{(s)} \rightarrow J/\psi p \bar{p}$ can help distinguish among different models

Grazie!

Funding from: Fond. Fratelli Confalonieri

BACKUP

Triangle diagrams

P_c(4312)⁺ and P_c(4440)⁺ too far from threshold

BUT to reproduce reasonable width for D_{s1}*(2860), the fit is not as good as with BW

•

Pentaquark analysis at LHCb

In 2015 LHCb discovered 2 states of $P_c^{+} \rightarrow J/\psi p$ in $\Lambda_b \rightarrow J/\psi p K$ with 3 fb⁻¹

Theoretical interpretation:

- Tightly-bound pentaquark:
 - Wide states
 - bound energy ~ 400 MeV
 - Why is P_c(4450) narrow?
 Higher value of L

• Loosely-bound state:

- Narrow states
- Molecule of baryon-meson: Σ_D^{*0} for P (4450)
- Weak binding: masses below baryon-meson thresholds: Q ~ few MeV
- <u>Triangle diagrams</u> with rescattering process X_{c1} p

IFAE 2019

Dataset: Run1+Run2

9x statistics than 2015 analysis

- Improvement in data selection with BDT
- luminosity x2 (9 fb⁻¹)
- cross-section x2

New narrow peaks visible with fine binning:

Fit results

Significance: $\Delta \chi^2$ difference wrt null-hypothesis

- Best sensitivity with $\cos\theta_{p_c}$ -weighted:
 - P_+(4312): 8.5 σ → 8.2 σ with look-elsewhere effect
 - $P_{c}^{+}(4440)$ and $P_{c}^{+}(4457)$: 5.4 σ (6.2 σ) for $m_{K_{D}}$ >1.9 GeV (cos $\theta_{P_{c}}$ -weighted)