Misure dell'angolo Gamma a LHCb

Matrice di Cabibbo-Kobayashi-Maskawa (CKM)

- Origina dalle interazioni di Yukawa dei quark nel Modello Standard
- Matrice unitaria contenente 3 parametri reali e 1 fase complessa

Angolo Gamma del Triangolo Unitario

Misure dirette

- Unitarietà rappresentata come Triangolo Unitario nel piano complesso lacksquare
- lacksquare

Misure indirette

Gamma (γ) unico angolo determinato in misure dirette (no quark top, processi a livello "albero") Confrontato con misure indirette (quark top in $\beta \in \Delta m_d \& \Delta m_s$, processi di ordine superiore)

LHCD

Misure dirette

Tasso di decadimento totale con D⁰ e anti-D⁰ nello stesso stato finale f

Interferenza fra due ampiezze di transizione con differenza di fase forte (δ) e debole (γ)

Michele Veronesi - IFAE 2019

 $A_1/A_2 = r_B e^{i(\delta_B \pm \gamma)}$

LHCD THCD

Integrate nel tempo

• Asimmetria di carica A^f e rapporto fra numero di eventi R^f

$$A^{f} = \frac{\Gamma(B^{-} \to D[\to f]K^{-}) - \Gamma(B^{+} \to D[\to f]K^{+})}{\Gamma(B^{-} \to D[\to f]K^{-}) + \Gamma(B^{+} \to D[\to f]K^{+})}$$

$$R^{f} = \frac{\Gamma(B^{-} \to D[\to f]K^{-}) + \Gamma(B^{+} \to D[\to f]K^{+})}{\Gamma(B^{-} \to D[\to f]\pi^{-}) + \Gamma(B^{+} \to D[\to f]\pi^{+})}$$

• Rapporto fra ampiezza soppressa (f_{sop}) e favorita (f_{fav})

$$R^{\pm} = \frac{\Gamma(B^{\pm} \to D[\to f_{\rm sop}]K^{\pm})}{\Gamma(B^{\pm} \to D[\to f_{\rm fav}]K^{\pm})}$$

Necessaria conoscenza delle asimmetrie di produzione dei B e ricostruzione dei $K \in \pi$

Osservabili

VS

Dipendenti dal tempo

Coefficienti delle equazioni lacksquaredi evoluzione temporale

$$C_f = \frac{1 - r_{DsK}^2}{1 + r_{DsK}^2} = -C_{\bar{f}}$$

$$A_{f(\bar{f})}^{\Delta\Gamma} = \frac{-2r_{D_sK}\cos(\delta\mp(\gamma-2\beta_s))}{1+r_{D_sK}^2}$$

$$S_{f(\bar{f})} = \frac{2r_{D_sK}\sin(\delta \mp (\gamma - 2\beta_s))}{1 + r_{D_sK}^2}$$

Decadimenti puramente adronici: eccellente identificazione di particelle e ricostruzione di vertici secondari

Requisiti sperimentali

Interpretazione dei risultati

Integrate nel tempo

Rapporto tra ampiezze di decadimento (r_B), differenza di fase forte (δ_B) e debole (γ) misurabili nei dati

Combinazione

$$\gamma = (74.0^{+5.0}_{-5.8})^{\circ} \quad (68.3\% \text{CL})$$

- Combina 98 osservabili e 14 parametri ausiliari
- di fase forte δ_B) e 1 differenza di fase debole (γ)

• Include 14 misure integrate nel tempo e 2 dipendenti dal tempo • Estrae 13 parametri adronici (rapporti fra ampiezze *r*_B e differenze

Integrate nel tempo

- \bullet
- \bullet
 - $\sigma(\phi_s) \sim 0.02 \text{ rad}$ con $B_s \rightarrow D_s K$ teoreticamente pulita (no diagrammi pinguino)

Proiezioni

VS

Dipendenti dal tempo

Р	Parameters	Run 1	$23{\rm fb}^{-1}$	$50{\rm fb}^{-1}$	$300{\rm fb}^{-1}$	$23{\rm fb}^{-1}$	$50{\rm fb}^{-1}$	$300{\rm fb}^{-1}$
\overline{S}	$S_f, S_{\bar{f}}$	0.20	0.043	0.027	0.011	0.02	0.0041	0.0026
A	$A_{f}^{\Delta\Gamma}, A_{\bar{f}}^{\Delta\Gamma}$	0.28	0.065	0.039	0.016	_	_	—
C	\sum_{f}	0.14	0.030	0.017	0.007	_	_	_

$$S_{f(\bar{f})} = \frac{2r_{D_sK}\sin(\delta\mp(\gamma-2\beta_s))}{1+r_{D_sK}^2} \quad A_{f(\bar{f})}^{\Delta\Gamma} = \frac{-2r_{D_sK}\cos(\delta\mp(\gamma-2\beta_s))}{1+r_{D_sK}^2}$$

• $\sigma(\gamma) \sim 20^{\circ}$ dipendenti dal tempo (3fb⁻¹ Run1), $\sim 10^{\circ}$ integrate nel tempo (2/5 fb⁻¹ Run2) Statistica Run2 ~3x Run1 (~2x produzione dei B, ~2x efficienza di ricostruzione) $\sigma(\gamma) \sim 1^{\circ}$ con 50fb⁻¹ (Run3), <1° con 300fb⁻¹ (alta-luminosità) su singola misura

versi stati finali e specie di B (B+, B⁰, B⁰s)

 γ senza nuova fisica a livello albero

/s. dipendenti nel tempo
e di determinazione indiretta:
tà (<1°)

Grazie per l'attenzione!

Backup

Input esterni (ADS/GLW)

$$A_{\text{ADS}}^{\pi K} = \frac{2r_B^{DK}r_D^{K\pi}\sin\left(\delta_B^{DK} + \delta_D^{K\pi}\right)\sin\gamma}{\left(r_B^{DK}\right)^2 + \left(r_D^{K\pi}\right)^2 + 2r_B^{DK}r_D^{K\pi}\cos\left(\delta_B^{DK} + \delta_D^{K\pi}\right)\cos\gamma},$$

$$A_{CP}^{KK} = \frac{2r_B^{DK}\sin\delta_B^{DK}\sin\gamma}{1 + (r_B^{DK})^2 + 2r_B^{DK}\cos\delta_B^{DK}\cos\gamma} + A_{CP}^{dir}(KK),$$

$$A_{CP}^{\pi\pi} = \frac{2r_B^{DK} \sin \delta_B^{DK} \sin \gamma}{1 + (r_B^{DK})^2 + 2r_B^{DK} \cos \delta_B^{DK} \cos \gamma} + A_{CP}^{\text{dir}}(\pi\pi),$$

$$A_{\rm fav}^{K\pi} = \frac{2r_B^{DK} r_D^{K\pi} \sin\left(\delta_B^{DK} - \delta_D^{K\pi}\right) \sin\gamma}{1 + (r_B^{DK} r_D^{K\pi})^2 + 2r_B^{DK} r_D^{K\pi} \cos\left(\delta_B^{DK} - \delta_D^{K\pi}\right) \cos\gamma},$$

$$R_{\rm ADS}^{\pi K} = \frac{\left(r_B^{DK}\right)^2 + \left(r_D^{K\pi}\right)^2 + 2r_B^{DK}r_D^{K\pi}\cos\left(\delta_B^{DK} + \delta_D^{K\pi}\right)\cos\gamma}{1 + \left(r_B^{DK}r_D^{K\pi}\right)^2 + 2r_B^{DK}r_D^{K\pi}\cos\left(\delta_B^{DK} - \delta_D^{K\pi}\right)\cos\gamma},$$

$$R_{CP}^{KK} = 1 + (r_B^{DK})^2 + 2r_B^{DK}\cos(\delta_B^{DK})\cos(\gamma),$$

 $R_{CP}^{\pi\pi} = 1 + (r_B^{DK})^2 + 2r$

LHCB-CONF-2018-002

$$r_B^{DK}\cos(\delta_B^{DK})\cos(\gamma).$$

r_D , δ_D da CLEO/ BESIII

Input esterni (GGSZ)

$$N_{\pm i}^{+} = h_{B^{+}} \left[F_{\mp i} + (x_{+}^{2} + y_{+}^{2}) F_{\pm i} + 2\sqrt{F_{i}F_{-i}}(x_{+}c_{\pm i} - y_{+}s_{\pm i}) \right],$$

$$N_{\pm i}^{-} = h_{B^{-}} \left[F_{\pm i} + (x_{-}^{2} + y_{-}^{2}) F_{\mp i} + 2\sqrt{F_{i}F_{-i}}(x_{-}c_{\pm i} + y_{-}s_{\pm i}) \right],$$

LHCB-CONF-2018-002

LHCB-PAPER-2018-017

$$\begin{aligned} x_{-} &= r_{B}^{DK} \cos(\delta_{B}^{DK} - \gamma), \\ y_{-} &= r_{B}^{DK} \sin(\delta_{B}^{DK} - \gamma), \\ x_{+} &= r_{B}^{DK} \cos(\delta_{B}^{DK} + \gamma), \\ y_{+} &= r_{B}^{DK} \sin(\delta_{B}^{DK} + \gamma). \end{aligned}$$

*c*_{*i*}, *s*_{*i*} da CLEO/ BESIII (medie pesate sulle ampiezze di $\cos(\delta_{\rm D}) \, {
m e} \, \sin(\delta_{\rm D})$ nel bin-*i* nel piano di Dalitz)

Michele Veronesi - IFAE 2019

LHCD

Sistematiche (ADS/GLW)

[%]	$A_K^{K\pi}$	A_{π}^{KK}	A_K^{KK}	$A_{\pi}^{\pi\pi}$	$A_K^{\pi\pi}$	R^{KK}	$R^{\pi\pi}$	$R_{K/\pi}^{K\pi}$
PID	6.0	4.3	2.0	2.7	10.3	13.8	18.8	0.0
Bkg rate	7.5	1.8	10.2	4.1	18.9	68.7	46.0	0.0
Bkg func	7.6	0.4	4.2	0.4	7.2	9.5	16.7	0.0
Sig func	11.1	0.9	0.8	0.9	14.3	7.9	20.9	0.0
Sim	7.1	0.5	0.2	0.4	5.6	3.5	7.6	174.2
Asym	37.4	52.7	3.7	31.2	2.3	0.1	0.1	0.0
Total	41.5	52.9	11.9	31.6	27.5	71.2	56.9	174.2

-HCB-PAPER-2017-021

Sistematiche (GGSZ)

Source	<i>x</i> _	<i>y_</i>	x_+	y_+
Statistical	1.7	2.2	1.9	1.9
Strong phase measurements	0.4	1.1	0.4	0.9
Efficiency corrections	0.6	0.2	0.6	0.1
Mass fit PDFs	0.2	0.3	0.2	0.3
Different mis-ID shape over Dalitz plot	0.2	0.1	0.1	0.1
Different low mass shape over Dalitz plot	0.1	0.2	0.1	0.1
Uncertainty on $B_s^0 \to \overline{D}{}^0 \pi^+ K^-$ yield	0.1	0.1	0.1	0.1
Bias correction	0.1	0.1	0.1	0.1
Bin migration	0.1	0.1	0.1	0.1
$K^0 \ CP$ violation and material interaction	0.1	0.2	0.1	0.1
Total experimental systematic uncertainty	0.7	0.5	0.7	0.4

Prestazioni (dipendenti dal tempo)

Identificazione del sapore

 $B_s^0 \to D_s^- \pi^+$ OS only SS only Both OS and SS Total

LHCB-PAPER-2017-047

LHCB-PAPER-2018-009

Michele Veronesi - IFAE 2019

$\varepsilon_{ m tag}$ [%]	$\varepsilon_{\mathrm{eff}}$ [%]
12.94 ± 0.11	1.41 ± 0.11
39.70 ± 0.16	1.29 ± 0.13
24.21 ± 0.14	3.10 ± 0.18
76.85 ± 0.24	5.80 ± 0.25

 $\sigma_{\rm stat.} \propto 1/(\epsilon_{\rm eff}N)^{1/2}$

Risoluzione Temporale $<\sigma_t>=(54.9\pm0.4)$ fs

<u>LHCb</u>

Accettanza

Da canale di controllo B_s→D_sπ

Michele Veronesi - IFAE 2019

LHCD

Sistematiche (dipendenti dal tempo)

Source Detection asymmetry Δm_s Tagging and scale factor Tagging asymmetry Correlation among observal Closure test Acceptance, simulation ration Acceptance data fit, Γ_s , Δ Total

-HCB-PAPER-2017-047

	C_{f}	$A_f^{\Delta\Gamma}$	$A^{\Delta\Gamma}_{ar{f}}$	S_{f}	$S_{ar{f}}$
	0.02	0.28	0.29	0.02	0.02
	0.11	0.02	0.02	0.20	0.20
	0.18	0.02	0.02	0.16	0.18
	0.02	0.00	0.00	0.02	0.02
bles	0.20	0.38	0.38	0.20	0.18
	0.13	0.19	0.19	0.12	0.12
io	0.01	0.10	0.10	0.01	0.01
Γ_s	0.01	0.18	0.17	0.00	0.00
	0.32	0.55	0.55	0.35	0.35

Relative all'incertezza statistica

Michele Veronesi - IFAE 2019

LHCb