Misura dei parametri di violazione della simmetria CP nei decadimenti $B_s^0 \rightarrow J/\psi K^+ K^- e B_s^0 \rightarrow J/\psi \pi^+ \pi^$ a LHCb

Piera Muzzetto

a nome della collaborazione LHCb

Università degli studi di Cagliari e INFN

IFAE 2019 - Napoli

Distorsioni •

Strategia di analisi + + + +

Conclusioni ♦ ♦ ♦

Antimateria? Evidente asimmetria \Rightarrow Violazione di CP Violazione di CP nell'interferenza fra Canali maggiormente studiati: \Rightarrow $B_s^0 \rightarrow J/\psi h^+ h^- (h = K, \pi)$ decadimento diretto e con mescolamento J/ψ f_{CP} B_s^0 $\overline{B_s}$ B^0 s B_{S} $h^{\dagger}h^{\dagger}$ $h^{\dagger}h^{\dagger}$ Fase di violazione di CP nell'interferenza : $\phi_s \stackrel{MS}{=} -2\beta_s = -2\arg\left(-\frac{V_{cb}V_{cs}^*}{V_{th}V_{ts}^*}\right)$ Trascurando i contributi al decadimento di ordine superiore

 B_{s}

Valore MS [CKM Fitter 2018]:

 $\phi_s^{MS} = -0.03686^{+0.00096}_{-0.00068}$ rad

Stato dell'arte pre Moriond 2019 [HFLAV 2018]:

$$\phi_s = -0.021 \pm 0.031 \text{ rad}$$

 $\Delta \Gamma_s = 0.088 \pm 0.006 \text{ ps}^{-1}$

Conclusioni 🔶 🔶

Novità: aggiornamento analisi di ϕ_s in LHCb

dati utilizzati: 2015/2016 luminosità integrata di 1.9 $\rm fb^{-1}$

 $B_s \rightarrow J/\psi K^+ K^-$

Canale d'oro per la misura di ϕ_s :

- maggior statistica ⇒ molto sensibile ad effetti di nuova fisica;
- stato finale combinazione di autostati di CP:

 $|B_L\rangle \propto p |B\rangle + q |\bar{B}\rangle \sim \text{CP pari}$ $|B_H\rangle \propto p |B\rangle - q |\bar{B}\rangle \sim \text{CP dispari}$

 $\Delta \Gamma_s = \Gamma_L - \Gamma_H$ $\Gamma_s = (\Gamma_L + \Gamma_H)/2$

molte variabili di interesse

• misura di
$$|\boldsymbol{\lambda}| = \eta \frac{q}{p} \frac{\overline{A_f}}{A_f}$$
 (Violazione di CP diretta)

$$B_s \rightarrow J/\psi \pi^+ \pi^-$$

- Diversi contributi risonanti con stato finale principalmente CP dispari
- permette la misura, mediante un'analisi d'ampiezza, di Γ_H e $|\lambda|$

NB: diagrammi di ordine superiore trascurabili ⇒ confronto con valore MS molto preciso

Base di elicità

Sperimentalmente **per determinare** ϕ_s occorre:

- separare gli stati di $CP \Rightarrow$ analisi angolare
- un'analisi dipendente dal tempo
- conoscere il sapore del *B_s*

↓ Studio del tasso di decadimento differenziale dipendente dal tempo:

$$\frac{d\Gamma}{dtdm_{hh}d\Omega} \sim \sum_{k=1}^{10} f(\Omega, m_{hh}) \underset{\downarrow}{\epsilon}(t, \Omega) (1 - 2\omega) h_k(t|B_s) \oplus G(t, \sigma_t)$$

efficienza risoluzione
$$h_k(t) = \frac{3}{4\pi} e^{-\Gamma_s t} \left\{ a_k \cosh \frac{\Delta \Gamma t}{2} + b_k \sinh \frac{\Delta \Gamma t}{2} + c_k \cos(\Delta m t) + d_k \sin(\Delta m t) \right\}$$

 ϕ_s e λ all'interno dei coefficienti

Selezione dei candidati

 $B_s \to J/\psi K^+K^-$

[LHCB-PAPER-2019-013]

 $B_s \rightarrow J/\psi \pi^+ \pi^-$

[arXiv:1903.05530]

Selezione dei candidati: **analisi multivariata** per la reiezione del fondo combinatorio

Risoluzione temporale

$$B_s \to J/\psi K^+ K^-$$

$$B_s \to J/\psi \pi^+ \pi^-$$

- Studio effettuato su un campione di $J/\psi h^- h^+$ proveniente dal VP
- Uso dell'errore sul tempo ricostruito δ_t evento per evento

Modello di risoluzione: somma di tre gaussiane.

$$\sigma_{eff}$$
~45.5 fs

 $\sigma_{eff} = 41.5 \text{ fs}$

Efficienza temporale

P. Muzzetto (UniCa e INFN)

 ${oldsymbol{\mathcal{E}}}_{ ext{data}}^{B_s^{u}}$ [a.u.]

$$B_s \to J/\psi K^+K^-$$

$$B_s \rightarrow J/\psi \pi^+ \pi^-$$

5

Canale di controllo: $B^0 \to J/\psi K^*(K^+\pi^-)$ $\tau_{B^0} = 1.520 \pm 0.004 \text{ ps}$ [HFLAV PDG 2018].

Studio simultaneo degli andamenti in MC B_s e in MC e dati del B^0 :

$$\varepsilon_{data}^{B_s^0}(t) = \varepsilon_{data}^{B_0^0}(t) \times \frac{\varepsilon_{sim}^{B_s^0}(t)}{\varepsilon_{sim}^{B_s^0}(t)}$$
LHCb Preliminary
$$1.5$$

10 t [ps] 0.4

0.2

time [ps]

10

Efficienza angolare

Causata dall'accettanza geometrica del rivelatore e dalla selezione cinematica.

Identificazione del sapore del B

$$B_s \to J/\psi K^+ K^-$$

$$B_s \to J/\psi \pi^+ \pi^-$$

Due algoritmi di identificazione del sapore

SS: correlazione fra il sapore del B_s e la carica del K prodotto nella stessa frammentazione

OS: anti-correlazione fra il sapore del B_s e la carica degli stati finale dell'altro adrone b

Procedura:

- Calibrazione della probabilità di scorretta identificazione η : $\omega = p_0 + p_1(\eta \langle \eta \rangle)$
- Definizione potere di identificazione: $\epsilon_{id}D^2$ con $D = (1 2\omega) e \epsilon_{id} = N_{B identificati}/N_{B tot}$ Run1~3.73 % Run1~3.89 %

Run2 $\epsilon_{id}D^2 = 4.73 \pm 0.34 \%$

Run2 $\epsilon_{id} D^2 = 5.06 \pm 0.38 \%$

Risultati

P. Muzzetto (UniCa e INFN)

🧛 [rad]

10 1 Decay time [ps]

5

$$B_s \to J/\psi \pi^+ \pi^-$$

Conclusioni *** * ***

Risultati con tutti i canali studiati a LHCb

Distorsioni •

Stato dell'arte pre Moriond 2019 [PDG 2018]: $\phi_s = -0.021 \pm 0.031 \text{ rad}$ $\Delta\Gamma_s = 0.088 \pm 0.006 \text{ ps}^{-1}$ $\phi_s = -0.040 \pm 0.025 \text{ rad}$ $|\lambda| = 0.991 \pm 0.010$ $\Gamma_s = 0.6563 \pm 0.0021 \text{ ps}^{-1}$ $\Delta\Gamma_s = 0.0812 \pm 0.0048 \text{ ps}^{-1}$

 ϕ_s è in accordo:

• entro 0.1σ con il *MS*

 $\phi_s^{\rm MS} = -0.03686^{+0.00096}_{-0.00068} ~\rm rad$

• entro $1.6\sigma \operatorname{con} \phi_s = 0$

 $|\lambda|$ è in accordo:

• entro $0.9\sigma \operatorname{con} |\lambda| = 1$

Γ_s/Γ_d è in accordo:

• entro $1.4\sigma \operatorname{con} HQE$ $\frac{\Gamma_s}{\Gamma_d} = 1.0006 \pm 0.0025$

Conclusioni *** * ***

Risultati con tutti i canali studiati a LHCb

Distorsioni •

Stato dell'arte attuale [HFLAV 2019]: $\phi_s = -0.054 \pm 0.021 \text{ rad}$ $\Delta\Gamma_s = 0.076 \pm 0.003 \text{ ps}^{-1}$ $\phi_s = -0.040 \pm 0.025 \text{ rad}$ $|\lambda| = 0.991 \pm 0.010$ $\Gamma_s = 0.6563 \pm 0.0021 \text{ ps}^{-1}$ $\Delta\Gamma_s = 0.0812 \pm 0.0048 \text{ ps}^{-1}$

 ϕ_s è in accordo:

• entro 0.1σ con il *MS*

 $\phi_s^{\rm MS} = -0.03686^{+0.00096}_{-0.00068} ~\rm rad$

• entro $1.6\sigma \operatorname{con} \phi_s = 0$

 $|\lambda|$ è in accordo:

• entro $0.9\sigma \operatorname{con} |\lambda| = 1$

 Γ_s/Γ_d è in accordo:

• entro $1.4\sigma \operatorname{con} HQE$ $\frac{\Gamma_s}{\Gamma_d} = 1.0006 \pm 0.0025$

Diapositive di supporto

P. Muzzetto (UniCa e INFN)

Sistematiche $B_s \rightarrow J/\psi KK$

Source	$ A_0 ^2$	$ A_{\perp} ^2$	ϕ_x [rad]	$ \lambda $	$\delta_{\perp} - \delta_0 \text{ [rad]}$	$\delta_{\parallel} - \delta_0 \text{ [rad]}$	$\Gamma_s - \Gamma_d \left[\text{ps}^{-1} \right]$	$\Delta \Gamma_s [\mathrm{ps}^{-1}]$	$\Delta m_s [\mathrm{ps}^{-1}]$
Mass width parametrisation	0.0006	0.0005	-	-	0.05	0.009	-	0.0002	0.001
Mass factorisation	0.0002	0.0004	0.004	0.0037	0.01	0.004	0.0007	0.0022	0.016
Multiple candidates	0.0006	0.0001	0.0011	0.0011	0.01	0.002	0.0003	0.0001	0.001
Fit bias	0.0001	0.0006	0.001	-	0.02	0.033	-	0.0003	0.001
$C_{\rm SP}$ factors	-	0.0001	0.001	0.0010	0.01	0.005	-	0.0001	0.002
Quadratic OS tagging		-	-	-	-	-	-	-	-
Time res.: statistical	-	-	-	-	-	-	-	-	-
Time res.: prompt	-	-		-	-	0.001	-	-	0.001
Time res.: mean offset	-	-	0.0032	0.0010	0.08	0.001	0.0002	0.0003	0.005
Time res.: Wrong PV	-	-	-	-	-	0.001	-	-	0.001
Ang. acc.: statistical	0.0003	0.0004	0.0011	0.0018	-	0.004	-	-	0.001
Ang. acc.: correction	0.0020	0.0011	0.0022	0.0043	0.01	0.008	0.0001	0.0002	0.001
Ang. acc.: low-quality tracks	0.0002	0.0001	0.0005	0.0014	-	0.002	0.0002	0.0001	-
Ang. acc.: t & σ_t dependence	0.0008	0.0012	0.0012	0.0007	0.03	0.006	0.0002	0.0010	0.003
Dectime eff.: statistical	0.0002	0.0003	-	-	-	-	0.0012	0.0008	-
Dectime eff.: $\Delta \Gamma_s = 0$ sim.	0.0001	0.0002	-	-	-	-	0.0003	0.0005	-
Dectime eff.: knot pos.	-	-	-	-	-	-	-	-	-
Dectime eff.: p.d.f. weighting	+	-	-	-	-	-	0.0001	0.0001	-
Dectime eff.: kin. weighting	+	-	-	-3	-	-	0.0002	-	-
Length scale	-	-			-	-	-		0.004
Quadratic sum of syst.	0.0024	0.0019	0.0061	0.0064	0.10	0.037	0.0015	0.0026	0.018

Sistematiche $B_s \rightarrow J/\psi \pi \pi$

Source	$\Gamma_{\rm H} - \Gamma_{B^0}$	$ \lambda $	ϕ_s
	$[{\rm fs}^{-1}]$	$[\times 10^{-3}]$	[mrad]
t acceptance	2.0	0.0	0.3
$ au_{B^0}$	0.2	0.5	0.0
Efficiency $(m_{\pi\pi}, \Omega)$	0.2	0.1	0.0
t resolution width	0.0	4.3	4.0
t resolution mean	0.3	1.2	0.3
Background	3.0	2.7	0.6-
Flavour tagging	0.0	2.2	2.3
Δm_s	0.3	4.6	2.5
$\Gamma_{\rm L}$	0.3	0.4	0.4
B_c^+	0.5	-	
Resonance parameters	0.6	1.9	0.8
Resonance modelling	0.5	28.9	9.0
Production asymmetry	0.3	0.6	3.4
Total	3.8	29.9	11.0

Prospetti per il futuro: $\phi_s^{c\bar{c}s}$ [LHCB PUB 2018-009]

Modelli ampiezza $m(\pi\pi)$

Component	Fit fractions (%)	Transversity fractions (%)			
		0		T	
	Solutio	on I			
$f_0(980)$	60.09 ± 1.48	100	3. - 3.	-8	
$f_0(1500)$	8.88 ± 0.87	100	0770	_	
$f_0(1790)$	1.72 ± 0.29	100		_	
$f_2(1270)$	3.24 ± 0.48	13 ± 3	37 ± 9	50 ± 10	
$f_{2}'(1525)$	1.23 ± 0.86	40 ± 13	31 ± 14	29 ± 25	
NR	2.64 ± 0.73	100	—	-	
	Solutio	n II			
$f_0(980)$	93.05 ± 1.12	100	-	-	
$f_0(1500)$	6.47 ± 0.41	100	8 — 8	<u> </u>	
$f_0(1710)$	0.74 ± 0.11	100	—	-	
$f_2(1270)$	3.22 ± 0.44	17 ± 4	30 ± 8	53 ± 10	
$f_{2}'(1525)$	1.44 ± 0.36	35 ± 8	31 ± 12	34 ± 17	
NR	8.13 ± 0.79	100	—	—	

Calibrazione degli algoritmi di identificazione del sapore dei B

$$\omega = p_0 + p_1(\eta - \langle \eta \rangle)$$

Mescolamento mesoni B

$$i\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} |B(t)\rangle \\ |\bar{B}(t)\rangle \end{pmatrix} = \mathcal{H} \begin{pmatrix} |B(t)\rangle \\ |\bar{B}(t)\rangle \end{pmatrix}, \text{ dove}$$
$$\mathcal{H} = \begin{pmatrix} \mathbf{M} - \frac{i}{2}\mathbf{\Gamma} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{22} \end{pmatrix} \end{pmatrix}$$

Fenomeno mescolamento:

 $|B_L\rangle \propto p |B\rangle + q |\bar{B}\rangle$ $|B_H\rangle \propto p |B\rangle - q |\bar{B}\rangle$

$$\left|B_{H/L}(t)\right\rangle = e^{-iM_{H/L}t} e^{-\Gamma_{H/L}t/2} \left|B_{H/L}\right\rangle$$

$$|B(t)\rangle = g_{+}(t) |B\rangle + \frac{q}{p} g_{-}(t) |\bar{B}\rangle$$
$$|\bar{B}(t)\rangle = \frac{p}{q} g_{-}(t) |B\rangle + g_{+}(t) |\bar{B}\rangle$$

$$\Gamma_q = \frac{\Gamma_L + \Gamma_H}{2} \equiv \frac{1}{\tau}, \qquad g_+(t) = e^{-im_q t} e^{-\Gamma_q t/2} \left[\cosh \frac{\Delta \Gamma_q t}{4} \cos \frac{\Delta m_q t}{2} - i \sinh \frac{\Delta \Gamma_q t}{4} \sin \frac{\Delta m_q t}{2} \right]$$
$$g_-(t) = e^{-im_q t} e^{-\Gamma_q t/2} \left[-\sinh \frac{\Delta \Gamma_q t}{4} \cos \frac{\Delta m_q t}{2} + i \cosh \frac{\Delta \Gamma_q t}{4} \sin \frac{\Delta m_q t}{2} \right]$$