

Scenari di nuova fisica nel decadimento $b \rightarrow c \tau \nu$

M. Blanke, A. Crivellin, S. de Boer, T. Kitahara, M. Moscati, U. Nierste, I. Nišandžić

Basato su Phys. Rev. D 99, 075006 | arXiv: 1811.09603

INCONTRI DI FISICA DELLE ALTE ENERGIE, NAPOLI | Aprile 2019

www.kit.edu

KIT - The Research University in the Helmholtz Association

Le anomalie $R_{D^{(*)}}$

$$R_{D^{(*)}} = \frac{\mathcal{BR}(B \to D^{(*)}\tau\nu)}{\mathcal{BR}(B \to D^{(*)}\ell\nu)}$$

- a livello quark: $b
 ightarrow c \ell \nu$
- test dell'universalità rispetto al sapore leptonico
- predizione teorica pulita grazie al rapporto
- dati da BaBar, LHCb, Belle
- tensione coi valori teorici 3.1 σ
- $R_{\mu/e}$ in accordo col MS \Rightarrow deviazione nel canale τ

Introduzione	Scenari di nuova fisica	Correlazione fra osservabili		Conclusioni
•	00000	00		0
Marta Moscati, TTP, KIT - Scer	ari di nuova fisica nel decadimento $b ightarrow c au u$,	Aprile 2019	2/10

Analisi di scenari di Nuova Fisica

Aprile 2019

3/10

Il contributo di Nuova Fisica può essere descritto in termini di una teoria effettiva

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= 2\sqrt{2}G_F V_{\text{cb}}[(1+C_V^L)\left(\bar{c}\gamma^{\mu}P_Lb\right)\left(\bar{\tau}\gamma_{\mu}P_L\nu_{\tau}\right) + \\ &+ C_S^R\left(\bar{c}P_Rb\right)\left(\bar{\tau}P_L\nu_{\tau}\right) + C_S^L\left(\bar{c}P_Lb\right)\left(\bar{\tau}P_L\nu_{\tau}\right) \\ &+ C_T\left(\bar{c}\sigma^{\mu\nu}P_Lb\right)\left(\bar{\tau}\sigma_{\mu\nu}P_L\nu_{\tau}\right)] \end{aligned}$$

Idea di base: effettuare un fit dei coefficienti di Wilson

- includendo tutti i dati relativi al vertice $(\bar{c}\Gamma b)(\bar{\tau}\Gamma\nu_{\tau})$
- per ciascuno scenario di singola particella

Marta Moscati, TTP, KIT – Scenari di nuova fisica nel decadimento b
ightarrow c au
u

$(\bar{c}\Gamma b)(\bar{\tau}\Gamma \nu_{\tau})$ – Fit

Osservabili misurate e incluse nel fit

• \mathcal{R}_D

• \mathcal{R}_{D^*}

• polarizzazione
$$\tau$$
 in $B \to D^*$:
 $P_{\tau}(D^*) = \frac{\Gamma(\tau^{\lambda=+1/2}) - \Gamma(\tau^{\lambda=-1/2})}{\Gamma(\tau^{\lambda=+1/2}) + \Gamma(\tau^{\lambda=-1/2})}$

• polarizzazione
$$D^*:F_L(D^*) = \frac{\Gamma(D_L^*)}{\Gamma(D^*)}$$

Osservabili predette

•
$$P_{\tau}(D) = \frac{\Gamma(\tau^{\lambda=+1/2}) - \Gamma(\tau^{\lambda=-1/2})}{\Gamma(\tau^{\lambda=+1/2}) + \Gamma(\tau^{\lambda=-1/2})}$$

• $\mathcal{R}(\Lambda_c) = \frac{\mathrm{BR}(\Lambda_b \to \Lambda_c \tau \nu)}{\mathrm{BR}(\Lambda_b \to \Lambda_c \ell \nu)}$

B_c

 ${\sf BR}({\it B_c}
ightarrow au
u)$ non è stato misurato, effettuiamo il fit richiedendo

- BR($B_c \rightarrow \tau \nu$) < 10% [Akeroyd, Chen (2017)]
- BR($B_c \rightarrow \tau \nu$) < 30% [Alonso, Grinstein, Martin Camalich (2016)]

• BR(
$$B_c \rightarrow \tau \nu$$
) < 60% [Limite conservativo]

IntroduzioneScenari di nuova fisicaCorrelazione fra osservabiliConclusioni \circ $\circ \bullet \circ \circ \circ$ $\circ \circ$ \circ Marta Moscati, TTP, KIT - Scenari di nuova fisica nel decadimento $b \rightarrow c\tau \nu$ Aprile 20194/10

Risultati del fit

Mediatore	p-value (%)	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$	$F_L(D^*)$	$P_{\tau}(D^*)$	$P_{\tau}(D)$	$\mathcal{R}(\Lambda_c)$
Higgs carico _{60%}	77.4	0.333 0.0 <i>σ</i>	0.299 +0.1 σ	0.54 -0.7 σ	-0.27 +0.2 σ	0.38	0.38
Higgs carico _{30%}	29.9	0.348 +0.4 <i>σ</i>	0.280 -1.2 <i>σ</i>	0.51 −1.0 <i>σ</i>	-0.35 0.0 <i>σ</i>	0.41	0.37
Higgs carico _{10%}	3.2	0.360 +0.8 <i>σ</i>	0.263 -2.2 σ	0.48 -1.4 <i>σ</i>	-0.44 -0.1 σ	0.43	0.36
LQ scalare <i>S</i> _{2;60,30%}	25.0	0.333 0.0 σ	0.297 0.0 σ	0.45 -1.7 <i>σ</i>	-0.41 -0.1 σ	0.40	0.38
LQ scalare S _{2;10%}	7.1	0.326 -0.2 <i>σ</i>	0.276 -1.4 <i>σ</i>	0.46 -1.6 <i>σ</i>	-0.44 -0.1 σ	0.38	0.36

Introduzione	Scenari di nuova fisica	Correlazione fra osservabili		Conclusioni
0	00000	00		0
Marta Moscati, TTP, KIT - Scen	ari di nuova fisica nel decadimento $b ightarrow c au u$		Aprile 2019	5/10

Correlazione fra BR $(B_c \rightarrow \tau \nu)$ e $\mathcal{R}(D^{(*)})$

Per gli scenari di Higgs carico e per il leptoquark scalare S2 ci si aspetta BR $(B_c o au
u) > 30\%$

Mediatore	p-value (%)	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$	$F_L(D^*)$	$P_{\tau}(D^*)$	$P_{\tau}(D)$	$\mathcal{R}(\Lambda_c)$
	77.4	0.333	0.299	0.54	-0.27	0.38	0.38
	11.4	0.0 σ	$+0.1 \sigma$	-0.7σ	$+0.2\sigma$		
Higgs carico	20.0	0.348	0.280	0.51	-0.35	0.41	0.37
11995 Canco _{30%}	20.0	$+0.4\sigma$	-1.2 <i>σ</i>	-1.0σ	0.0 σ		
Higgs carico	3.2	0.360	0.263	0.48	-0.44	0.43	0.36
riiggs canco _{10%}	5.2	$+0.8\sigma$	-2.2σ	-1.4σ	$-$ 0.1 σ		
	25.0	0.333	0.297	0.45	-0.41	0.40	0.38
LQ SCAIATE 32;60,30%	20.0	0.0 σ	0.0 σ	-1.7σ	$-$ 0.1 σ		
	7 1	0.326	0.276	0.46	-0.44	0.38	0.36
	1.1	-0.2σ	-1.4σ	-1.6σ	-0.1 σ		

Introduzione	Scenari di nuova fisica	Correlazione fra osservabili		Conclusioni
0	00000	00		0
Marta Moscati, TTP, KIT - Sce	enari di nuova fisica nel decadimento $b ightarrow c au u$		Aprile 2019	6/10

Impatto di $F_L(D^*)$

L'attuale valore di $F_L(D^*)$ favorisce lo scenario di Higgs carico

$F_L(D^*) = 0.60 \pm 0.08 \pm 0.035$ [Belle, 2018]

Mediatore	p-value (%)	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$	$F_L(D^*)$	$P_{ au}(D^*)$	$P_{\tau}(D)$	$\mathcal{R}(\Lambda_c)$
	31.5	0.327	0.300	0.47	-0.48	0.21	0.38
	51.5	-0.2σ	$+0.2\sigma$	-1.5σ	-0.2σ		
Higgs carico	77.4	0.333	0.299	0.54	-0.27	0.38	0.38
higgs canco _{60%}	77.4	0.0σ	$+0.1 \sigma$	$-$ 0.7 σ	$+0.2\sigma$		
I O vettoriale //	25.9	0.337	0.296	0.46	-0.50	0.29	0.38
	20.0	$+0.1 \sigma$	$-$ 0.1 σ	-1.6σ	-0.2σ		
	25.0	0.333	0.297	0.45	-0.41	0.40	0.38
LQ SCAIATE 32;60,30%	23.0	0.0 σ	0.0 σ	-1.7σ	$-$ 0.1 σ		

Introduzione	Scenari di nuova fisica	Correlazione fra osservabili		Conclusioni
0	0000	00		0
Marta Moscati, TTP, KIT - Scena	ari di nuova fisica nel decadimento $b ightarrow c au u$		Aprile 2019	7/10

Correlazione fra $\mathcal{R}(\Lambda_c)$ e $\mathcal{R}(D^{(*)})$

LQ scalare S₁ Higgs carico * Modello Standard LQ vettoriale U₁ LQ scalare S₂ * Modello Standard

Introduzione	Scenari di nuova fisica	Correlazione fra osservabili		Conclusioni
0	00000	•0		0
Marta Moscati, TTP, KIT - Scena		Aprile 2019	8/10	

Correlazione fra $\mathcal{R}(\Lambda_c)$ e $\mathcal{R}(D^{(*)})$

 $\mathcal{R}_{SM}(\Lambda_c) = 0.33 \pm 0.01$ $\mathcal{R}_{NP}(\Lambda_c) = 0.38$

 $\mathcal{R}(\Lambda_c)$ servirà da verifica per le misure di $\mathcal{R}(D^{(*)})$

Introduzione	Scenari di nuova fisica	Correlazione fra osservabili		Conclusioni
0	00000	•0		0
Marta Moscati, TTP, KIT - Scena	ri di nuova fisica nel decadimento $b ightarrow c au u$		Aprile 2019	8/10

Osservabili di polarizzazione

Marta Moscati, TTP, KIT – Scenari di nuova fisica nel decadimento b
ightarrow c au
u

Aprile 2019

9/10

Osservabili di polarizzazione

Le osservabili di polarizzazione consentono di distinguere gli scenari di nuova fisica

Introduzione	Scenari di nuova fisica	Correlazione fra osservabili		Conclusioni
0	00000	00		0
Marta Moscati, TTP, KIT - Scena	ri di nuova fisica nel decadimento $b ightarrow c au u$		Aprile 2019	9/10

Conclusioni

- Aggiornamento dei fit dei dati su $b \rightarrow c\tau\nu$, con l'inclusione di $F_L(D^*)$ e dei dati rilasciati da Belle @Moriond 2019
- Analisi delle correlazioni fra osservabili:
 - correlazione fra BR($B_c \rightarrow \tau \nu$) e $\mathcal{R}(D^{(*)})$ per scenari di Higgs carico e Leptoquark S_2
 - $\mathcal{R}(\Lambda_c)$ servirà da cross-check per le misure di $\mathcal{R}(D^{(*)})$
 - le osservabili di polarizzazione consentiranno di distinguere gli scenari di nuova fisica responsabili delle anomalie R(D^(*))