

In collaboration with:

V. Lubicz, G. Martinelli, F. Sanfilippo and S. Simula

based on: ArXiv:1707.03019 and ArXiv:1901.10462

Hadronic Vacuum Polarisation

Given the present exper. and theor. (LQCD) accuracy, an important source of uncertainty are long distance electromagnetic and SU(2) breaking corrections

estimate in sQED $\delta a_{\mu}^{HVP} \sim 39(1) \cdot 10^{-11}$

5

g_µ-2 Theory Initiative

Lattice QCD calculations of the HVP

Mattia Bruno,¹ Michele Della Morte,² Aida El-Khadra,³ Davide Giusti,⁴ Steven Gottlieb,⁵
Vera Gülpers,⁶ Gregorio Herdoíza,⁷ Taku Izubuchi,⁸ Christoph Lehner,¹ Laurent Lellouch,⁹
Marina Marinković,¹⁰ Aaron S. Meyer,¹ Kohtaroh Miura,¹¹ Antonin Portelli,⁶ Silvano Simula,⁴ Ruth Van de Water,¹² Georg von Hippel,¹¹ Hartmut Wittig,¹¹ and ...

Leading-order contributions to $a_{\mu}^{\rm HVP}$

HVP from LQCD

$$\Pi_{\mu\nu}(Q) = \int d^4x \ e^{iQ\cdot x} \left\langle J_{\mu}(x) J_{\nu}(0) \right\rangle = \left[\delta_{\mu\nu} Q^2 - Q_{\mu} Q_{\nu} \right] \Pi(Q^2)$$

Time-Momentum Representation

$$a_{\mu}^{\rm HVP} = 4\alpha_{em}^2 \int_{0}^{\infty} dt \ \widetilde{f}(t) \ V(t)$$

D. Bernecker and H. B. Meyer, 2011

$$V(t) \equiv \frac{1}{3} \sum_{i=1,2,3} \int d\vec{x} \left\langle J_i(\vec{x},t) J_i(0) \right\rangle$$

Details of the lattice simulation

We have used the gauge field configurations generated by ETMC, European Twisted Mass Collaboration, in the pure isosymmetric QCD theory with Nf=2+1+1 dynamical quarks

- Gluon action: Iwasaki	M_K	M_{π}	$a\mu_s$	N_{cf}	$a\mu_{\delta}$	$a\mu_{\sigma}$	$a\mu_{ud}$	V/a^4	β	ensemble
- Ouark action: twisted mass at maximal twist	(MeV)	(MeV)								
	576(22)	317(12)	0.02363	100	0.19	0.15	0.0040	$40^3 \cdot 80$	1.90	A40.40
(automatically O(a) improved)	568(22)	275(10)		150			0.0030	$32^3 \cdot 64$		A30.32
OS for s and c valence quarks	578(22)	316(12)		100			0.0040			A40.32
OS IOI'S and C valence quarks	586(22)	350(13)		150			0.0050	0		A50.32
	582(23)	322(13)		150			0.0040	$24^3 \cdot 48$		A40.24
Dian masses in the manage 220 (00 MeV)	599(23)	386(15)		150			0.0060			A60.24
Pion masses in the range 220 - 490 MeV	618(14)	442(17)		150			0.0080			A80.24
A value of $M \sim 220$ MeV and $a \sim 0.00$ fm	639(24)	495(19)		150			0.0100	223 12		<u>A100.24</u>
4 volumes $(\underline{u})_{\pi} \approx 320$ fille v and $u = 0.09$ m	586(23)	330(13)		150	 T		0.0040	$20^{3} \cdot 48$		A40.20
M L \sim 20 \cdot 5 9	546(19)	259 (9)	0.02094	150	0.170	0.135	0.0025	$32^3 \cdot 64$	1.95	B25.32
$M_{\pi}L \simeq 5.0 \div 5.8$	555(19)	302(10)		150			0.0035			B35.32
	578(20)	375(13)		150			0.0055			B55.32
Europeon Twisted Mass	599(21)	436(15)		80			0.0075	0		B75.32
	613(21)	468(16)		150			0.0085	$24^3 \cdot 48$		B85.24
	529(14)	223~(6)	0.01612	100	0.1385	0.1200	0.0015	$48^3 \cdot 96$	2.10	D15.48
	535(14)	256~(7)		100			0.0020			D20.48
	550(14)	312(8)		100			0.0030			D30.48

ollaborati

Light quark contribution

Isospin-breaking corrections to a_{μ}^{HVP}

The (m_d-m_u) expansion

- Identify the isospin-breaking term in the QCD action

$$S_{m} = \sum_{x} \left[m_{u} \overline{u} u + m_{d} \overline{d} d \right] = \sum_{x} \left[\frac{1}{2} \left(m_{u} + m_{d} \right) \left(\overline{u} u + \overline{d} d \right) - \frac{1}{2} \left(m_{d} - m_{u} \right) \left(\overline{u} u - \overline{d} d \right) \right] =$$
$$= \sum_{x} \left[m_{ud} \left(\overline{u} u + \overline{d} d \right) - \Delta m \left(\overline{u} u - \overline{d} d \right) \right] = S_{0} - \Delta m \hat{S} \quad \longleftarrow \quad \hat{S} = \Sigma_{x} (\overline{u} u - \overline{d} d)$$

- Expand the functional integral in powers of Δm $\langle O \rangle = \frac{\int D\phi \ Oe^{-S_0 + \Delta m \hat{S}}}{\int D\phi \ e^{-S_0 + \Delta m \hat{S}}} \stackrel{\text{lst}}{\simeq} \frac{\int D\phi \ Oe^{-S_0} \left(1 + \Delta m \hat{S}\right)}{\int D\phi \ e^{-S_0} \left(1 + \Delta m \hat{S}\right)} \approx \frac{\langle O \rangle_0 + \Delta m \langle O \hat{S} \rangle_0}{1 + \Delta m \langle \hat{S} \rangle_0} = \langle O \rangle_0 + \Delta m \langle O \hat{S} \rangle_0$ for isospin symmetry

- At leading order in Δm the corrections only appear in the valence-quark propagators:

(disconnected contractions of ūu and dd vanish due to isospin symmetry)

MUonE

discussed in the discussed in the following, but also for illustrating the

M. D

nere

 M_{K^0} within the electroquenched approximation. The perturbative expansion of the electroquenched theory, i.e. the

Backup slides

Correlator representation

$$V^{ud}(t) = V_{dual}(t) + V_{\pi\pi}(t)$$

low and intermediate time distances

$$V_{dual}(t) \equiv \frac{1}{24\pi^2} \int_{s_{dual}}^{\infty} ds \sqrt{s} \ e^{-\sqrt{st}} R^{pQCD}(s)$$

$$s_{dual} = \left(\frac{M_{\rho}}{F_{dual}}\right)^2 \qquad R_{dual} = 1 + O\left(\frac{m_{ud}^4}{s_{dual}^2}\right) + O(\alpha_s) + O(\alpha)$$

$$V_{dual}(t) = \frac{5}{18\pi^2} \frac{R_{dual}}{t^3} e^{-(M_{\rho} + E_{dual})t} \left[1 + \left(M_{\rho} + E_{dual} \right) t + \frac{1}{2} \left(M_{\rho} + E_{dual} \right)^2 t^2 \right]$$

long time distances

$$V_{\pi\pi}(t) = \sum_{n} v_{n} |A_{n}|^{2} e^{-\omega_{n}t}$$

M. Lüscher

$$\omega_n = 2\sqrt{M_\pi^2 + k_n^2} \quad [99]$$

$$\lambda \text{ Lüscher}$$

L. Lellouch and M. Lüscher, 2001 condition

$$|A_n|^2 \rightarrow |F_{\pi}(\omega_n)|^2$$

Gounaris-Sakurai parameterization

 $|\mathsf{F}_{\pi}(\omega)|^2$

 $M_{\rho} g_{\rho\pi\pi}$ GS, 1968 50 O KLOE [62] 40 -GS M = 0.135 GeV 30 M = 0.775 GeV g_{0ππ} = 5.50 20 10 0.5 0.6 0.7 0.8 0.9 1.0 1.1

ω (GeV)

FVEs correction (a) $a^2 \rightarrow 0$

NLO ChPT does not take into account the resonant interaction in the two-pion system