L'esperimento BESIII: piani e prospettive dopo i primi 10 anni di presa dati

Riccardo Farinelli in rappresentanza della collaborazione BESIII

Lo spettrometro **BESIII** e il collisionatore **BEPCII**

Risultati di interesse dell'esperimento e questioni irrisolte da BESIII

Potenziamento della macchina e la futura **presa dati**

Prospetto

- 中国党型长长公司创造

Nucl. Instr. Meth. A614, 345 (2010)

BESIII @ BEPCII

- Beijing Electron-Positron Collider
 BEPCII assieme a BEijing Spectrometer
 BESIII operano nella regione di energia per la fisica del charmonio
- Luminosità istantanea = 10^{33} cm⁻² s⁻¹
- Energia_{cm} = 2 4.6 GeV
- Il programma di fisica include:
 - Test di precisione EW

۶ ...

- Studi di spettroscopia leggera
- » Stati esotici charmati detti XYZ
- > Studi di fisica nella regione τ -charm

Lo spettrometro BESIII

Sommario della presa dati

BESIII Data Sets (primary):

 $(e^+e^- \text{ collisions at } E_{CM} \text{ between } 2.0 \text{ and } 4.6 \text{ GeV})$

2009: 106M $\psi(2S)$ 225M J/ψ 2010: 975 pb⁻¹ at ψ(3770) 2011: 2.9 fb⁻¹ at ψ(**3770**) (total) 482 pb⁻¹ at 4.01 GeV 2012: 0.45B $\psi(2S)$ (total) 1.3B J/ψ (total) 2013: 1092 pb⁻¹ at 4.23 GeV 826 pb⁻¹ at 4.26 GeV 540 pb-1 at 4.36 GeV ~50 pb-1 at 3.81, 3.90, 4.09, 4.19, 4.21, 4.22, 4.245, 4.31, 4.39, 4.42 GeV 2014: 1029 pb-1 at 4.42 GeV 110 pb⁻¹ at **4.47 GeV** 110 pb⁻¹ at **4.53 GeV** 48 pb-1 at 4.575 GeV 567 pb-1 at 4.6 GeV 0.8 fb⁻¹ **R-scan** from 3.85 to 4.59 GeV (104 points) 2015: **R-scan** from 2-3 GeV + 2.175 GeV data 2016: ~3fb⁻¹ at 4.18 GeV (for D_s) 2017: 7 × 500 pb⁻¹ between 4.19 and 4.27 GeV 2018: J/ψ (and tuning new RF cavity) 2019: 10B J/ψ ; more data in the XYZ region

X(1835) è uno stato $p\overline{p}$?

Stato prodotto molto vicino alla soglia di $p\overline{p}$ Numeri quantici misurati J^{PC} 0 $^{\text{-+}}$

L'andamento della risonanza mostra un comportamento discontinuo all'apertura della soglia ppbar

Osservata nei canali $f_0(980)\eta e \gamma \phi$

PRL **115**, 091803 (2015) PRD **97**, 051101 (2018)

$$J/\psi \rightarrow \gamma p \bar{p}$$

[PRL 108, 112003 (2012)]

L'osservazione mancante nei decadimenti non radiativi come J/ $\psi \rightarrow \omega X$ implica una forte componente gluonica della risonanza PRD **99**, 091101 (2019)

Le possibili interpretazioni sono: stato $p\overline{p}$, glueball pseudovettoriale o eccitazione radiale del η '

Polarizzazione dello spin in $J/\psi \rightarrow \Lambda \overline{\Lambda}$

Processo J/ $\psi \rightarrow \Lambda \overline{\Lambda}$ misurato e descritto in funzione dei parametri BF, α and $\Delta \Phi(G_E/G_M)$

Misurata la fase per la prima volta: $\Delta \Phi = 42.5 \pm 0.6 \pm 0.5^{\circ}$

Parametro della distribuzione angolare α misurato con elevata precisione e differisce oltre 5 σ dal valore accettato dal PDG: $\alpha = 0.750 \pm 0.009 \pm 0.004$

Articolo in pubblicazione su Nature Physics

$$ar{P}_{\Lambda}(heta_{\Lambda}) = rac{\sqrt{1-lpha_{\psi}\cos heta_{\Lambda}\sin heta_{\Lambda}}}{1+lpha_{\psi}\cos^2 heta_{\Lambda}}\sin(\Delta\Phi)\hat{y}$$

Stati vettore Y dopo la Y(4260)

Dal 2012 a oggi è stata osservata una sovrabbondanza di stati vettori nello spettro del charmonio.

BESIII ha risolto la Y(4260) osservando due diverse risonanze tra4.1 e 4.5 GeV in diversi canali legati al charmonio e stati charmati.

Stati esotici: X(3872)

Massa prossima alla soglia del D⁰ \overline{D} *⁰: M(X) - M(D⁰ \overline{D} *⁰) = 0.01 ± 0.18 MeV ma la ricerca fallita del patner X(4013) con J^{PC} = 2⁺⁺ non supporta la descrizione a molecola D⁰ \overline{D} *⁰

E' molto piccata con $\Gamma(X) < 1.2$ MeV

 $J^{PC} = 1^{++}$ e in alcuni decadimenti li viola

Decade in $\rho J/\psi$, $\omega J/\psi$, $D^0 \overline{D^{*0}}$ e il charmonio ha decadimenti radiativi verso la X(3872), forse attravero la Y(4220)

Tetraquark o simili in Z_c e Z'_c

descrizione della Z_c come tetraquark o molecola

La presa dati di BESIII è stata confermata fino al 2024 e probabilmente fino al 2029.

La sua capacità di misura di stati charmati e stati XYZ è unica.

Una lista di miglioramenti dello spettrometro e dell'acceleratore sono stati programmati.

BEPCII:

- 1. Aumento dell'energia del fascio fino a 2.5 GeV
- 2. Iniezione continua per aumentare la luminosità

BESIII:

- 1. Barrel TOF con multistrato di **RPC**
- 2. Un nuovo tracciatore interno a base di CGEM

La presa dati di BESIII è stata confermata fino al 2024 e probabilmente fino al 2029. La sua capacità di misura di stati charmati e stati XYZ è unica.

Una lista di miglioramenti dello spettrometro e dell'acceleratore sono stati programmati.

BEPCII:

- 1. Aumento dell'energia del fascio fino a 2.5 GeV
- 2. Iniezione continua per aumentare la luminosità

BESIII:

- 1. Barrel TOF con multistrato di **RPC**
- 2. Un nuovo tracciatore interno a base di CGEM

 $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$

Osservata in $\pi^+\pi^-\psi(2S)$ ma non in **decadimenti del D** né in $\pi^+\pi^-J/\psi$

R.Farinelli

La presa dati di BESIII è stata confermata fino al 2024 e probabilmente fino al 2029. La sua capacità di misura di stati charmati e stati XYZ è unica.

Una lista di miglioramenti dello spettrometro e dell'acceleratore sono stati programmati.

BEPCII:

- 1. Aumento dell'energia del fascio fino a 2.5 GeV
- 2. Iniezione continua per aumentare la luminosità

BESIII:

- 1. Barrel TOF con multistrato di **RPC**
- 2. Un nuovo tracciatore interno a base di CGEM

R.Farinelli

IFAE, 10 Apr. 2019 - Napoli

La presa dati di BESIII è stata confermata fino al 2024 e probabilmente fino al 2029.

La sua capacità di misura di stati charmati e stati XYZ è unica.

Una lista di miglioramenti dello spettrometro e dell'acceleratore sono stati programmati.

BEPCII:

- 1. Aumento dell'energia del fascio fino a 2.5 GeV
- 2. Iniezione continua per aumentare la luminosità

BESIII:

- 1. Barrel TOF con multistrato di **RPC**
- 2. Un nuovo tracciatore interno a base di CGEM

IFAE, 10 Apr. 2019 - Napoli

Le proprietà di particelle legate al charmonio sono stata investigate dall'esperimento BESIII e grazie a 10^{10} J/ ψ ha indagato maggiormente i decadimenti della X(1835) come possibile stato ppbar e la polarizzazione della Λ .

Gli stati esotici che decadono in charmonio e mesoni charmati, detti XYZ, sono stati osservati in diversi canali evidenziando la possibile natura di questi e decadimenti radiativi e adronici che le legano.

Futuri miglioramenti dello spettrometro BESIII e dell'acceleratore BEPCII permetteranno una collezione maggiore di dati a valori energetici più elevati per

X(3872): $e^+e^- \rightarrow \gamma (\pi^+\pi^- J/\psi)$, $e^+e^- \rightarrow \gamma (\omega J/\psi)$ Cross section measurement of X(3872) $\rightarrow \gamma (\pi^+\pi^- J/\psi)$ BESIII: arXiv:1903.04695 suggests a connection between X(3872) and Y(4260)from BESIII: PRL 112. 092001 (2014) + Data 15 + Data

New analysis confirms the Belle and BaBar observations in PRD 82, 011101(R) (2010) of X(3872) $\rightarrow \gamma (\omega J/\psi)$

Simultaneous($\omega J/\psi$ and $\pi \pi J/\psi$) fit to the cross section with a single Breit-Wigner resonance. The relative decay ratio is: $\mathcal{R} = 1.6^{+0.4}_{-0.3} \pm 0.2$

 $M[Y(4200)] = 4200.6^{+7.9}_{-13.3} \pm 3.0 \text{ MeV}/c^2$ $\Gamma[Y(4200)] = 115^{+38}_{-26} \pm 12 \text{ MeV}$

R.Farinelli

X(3872)

20

Events / 3 MeV/c²

3.8

(qd) (/\/(__μ_+μλ←

X(3872): $e^+e^- \rightarrow \gamma (\omega J/\psi)$

BESIII: arXiv:1903.04695

Cross section measurement of X(3872) $\rightarrow \gamma (\pi^+\pi^- J/\psi)$ suggest a connection between X(3872) and Y(4260) from BESIII: PRL **112**. 092001 (2014)

New analysis confirm the Belle and BaBar observations in PRD 82, 011101(R) (2010) of X(3872) $\rightarrow \gamma (\omega J/\psi)$

X(3915) and X(3960) are estimated to be 3.1 σ and 3.4 σ only.

IFAE, 10 Apr. 2019 - Napoli

Clear signal(5.2 σ) found for X(3872) $\rightarrow \pi^0 \chi_{c1}$ (1P). No signal for J=0,2

$$\begin{split} R_J &= B(X \to \pi^0 \chi_{cJ}) \ / \ B(X \to \pi^+ \pi^- J/\psi): \\ R_0 &< 19 \ (90\% \ U.L.) \\ R_1 &= 0.88^{+0.31} {}_{-0.26} \pm 0.14 \\ R_2 &< 1.0 \ (90\% \ U.L.) \end{split}$$

Pionic transition has been proposed to distinguish if X(3872) is a **conventional cc** states in PRD 77, 014013 (2008)

 $\Gamma(X(3872) \rightarrow \pi^0 \chi_{c1} > 0.06 \text{ keV} \text{ and this measurement disfavors this interpretation.}$

Z: $e^+e^- \rightarrow \pi^+ (\pi^- J/\psi)$, $\pi^0 (\pi^0 J/\psi)$

Structure electrically charge and close to charmonium: Decay $J/y \rightarrow$ contains $c\bar{c}$ Electrically charged \rightarrow contains ud

M = 3899.0 (\pm 3.6 \pm 4.9) MeV , Γ = 46 (\pm 10 \pm 20) MeV

Confirmed by CLEO-c and Belle

Discovered in neutral decays at different energies with a significance > 10σ The likelihood method support quantum number $J^P = 1 +$ with a significance > 7σ

Isospin triple established

Quantum number determined

 $Z_c \rightarrow \rho \eta_c, Z_c' \rightarrow \rho \eta_c$

Nine decay channels to extract η_c . Five energy points studied. Strong evidence of Z_c in $e^+e^- \rightarrow \pi^+$ ($\rho\eta_c$) @ 4.23 GeV, stat. significance 4.3 σ Z_c ' is not seen in all data sets.

IFAE, 10 Apr. 2019 - Napoli

 $Z \rightarrow \rho \eta_c$ $R_{z'} = \frac{Br(Z'_c \to \rho \eta_c)}{Br(Z'_c \to \pi h_c)}$ $R_{z} = \frac{Br(Z_{c} \to \rho \eta_{c})}{Br(Z_{c} \to \pi I/\psi)}$ 100 100 Dynamical Z_c tetraq.Type-I mamical Z′c tetraq. (type indep.) — Molecular Z_c Molecular Z'_c — ¥ 10^{−2} 𝒫 10^{−2} 10^{-4} 10^{-4} $10^{-6}_{10^{-2}}$ 10⁻⁶ 10⁻⁴ 10^{-3} 10^{-2} 0.1 10 100 1000 0.1 10 100 $\mathcal{R}_{Z'}$ \mathcal{R}_Z

Our measurement about Z_c does not agree with both molecular and tetraquark assumptions in PLB 746, 194 (2015). The measurement about Z_c ' is smaller than the results expected from the calculations based on tetra-quark assumption while not in contradiction with the molecule model interpretation.

R.Farinelli

Y: $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

BESIII: PRL 118, 092001 (2017)

The **Y(4260)** has been discovered by BaBar experiment in the mass spectrum $m(\pi^+\pi^- J/\psi)$ and then confirmed by Belle.

BESIII measured the cross section of this decay channel using two dataset.

Two resonances describe the data with significance > 7.6σ while the fit with a single peak has a smaller significance.

$$\begin{split} \mathbf{M}_1 &= \mathbf{4222} \pm 3.1 \pm 1.4 \ \mathrm{MeV} \ , \ \boldsymbol{\Gamma}_1 &= \mathbf{44.1} \pm 4.3 \pm 2.0 \ \mathrm{MeV} \\ \mathbf{M}_2 &= \mathbf{4320} \pm 10.4 \pm 7.0 \ \mathrm{MeV}, \ \boldsymbol{\Gamma}_2 &= \mathbf{101.4}^{+25.3} \pm 10.2 \ \mathrm{MeV} \end{split}$$

R.Farinelli

Y: $e^+e^- \rightarrow \omega \chi_{c0}$

Estention of a previous measurement PRL 112, 092001 (2015)

Evidence for a **combination of S and D-wave** contributions , although the statistical significance of this conclusion is only 2σ compared with a pure S-wave contribution

$$M = (4218.5 \pm 1.6) \text{ MeV}/c^2$$

$$\Gamma = (28.2 \pm 3.9) \text{ MeV}$$

Y: $e^+e^- \rightarrow \omega \chi_{c0}$

Y(4220) has been measured in several decays.

Masses and widths reported are compatibles.

 $M = (4218.5 \pm 1.6) \text{ MeV}/c^2$ $\Gamma = (28.2 \pm 3.9) \text{ MeV}$

 $Y(4660): e^+e^- \rightarrow \Lambda_c$

Belle collaboration observed the baryonic decay of Y(4660)

M = 4652.5 ± 3.4 , $\Gamma = 62.6 \pm 5.6$ MeV

 $\sigma_{\Lambda c\Lambda c} \sim 0.55 \text{ nb}$ @ peak is comparable to $\sigma(e^+e^- \rightarrow pp) \sim 0.8 \text{ nb}$ @ threshold while $\sigma_{\pi\pi\psi(2S)} \sim 0.04 \text{ nb}$. Y(4660) baryonic coupling > 10 x Y(4660) mesonic coupling

Is Y(4660) a hidden-charmed baryonium ?

BESIII has no sufficient energy to confirm the entire line-shape. The trend of the first results seems different. Observed in $\pi^+\pi^-\psi(2S)$ but not observed in **D meson** decay neither in $\pi^+\pi^-J/\psi$

R.Farinelli

If X(3872) is a DD molecule then X(4013) is its heavy quark spinsymmetry partner with $J^{PC} = 2^{++}$.

X(4013) should decay dominantly in \overline{DD} but no observation is reported.

Abundancy of exotics states

Particle	$I^G J^{PC}$	Mass [MeV]	Width [MeV]	Production and Decay
$X(3823) (\psi_2(1D))$	$(0^{-}2^{})$	3822.2 ± 1.2 [176]	< 16	$B \to KX; X \to \gamma \chi_{c1}$
(//	(~ =)			$e^+e^- \to \pi^+\pi^- X; X \to \gamma \chi_{c1}$
				$B \rightarrow KX; X \rightarrow \pi^+\pi^- J/\psi$
				$B \to KX; X \to D^{*0}D^0$
	01411			$B \to KX; X \to \gamma J/\psi, \gamma \psi(2S)$
X(3872)	0+1++	3871.69 ± 0.17 [176]	< 1.2	$B \to KX; X \to \omega J/\psi$
\sim				$B \to K \pi X; X \to \pi^+ \pi^- J/\psi$
				$e^+e^- \to \gamma X; X \to \pi^+\pi^- J/\psi$
				$pp \text{ or } pp \rightarrow X + \text{any.; } X \rightarrow \pi^+\pi^- J/\psi$
$(Z_c(3900))$	$1^{+}1^{+-}$	3886.6 ± 2.4 [176]	28.1 ± 2.6	$e^+e^- \rightarrow \pi Z; Z \rightarrow \pi J/\psi$
V (2017)				$e^+e^- \rightarrow \pi Z; Z \rightarrow D^-D$
X (3915)	0+0++	3918.4 ± 1.9 [176]	20 ± 5	$\gamma \gamma \rightarrow \Lambda; \Lambda \rightarrow \omega J/\psi$
Y (3940)	0+0++	2005 0 1 0 0 [152]	0410	$B \rightarrow K \Lambda; \Lambda \rightarrow \omega J/\psi$
$Z(3930)(\chi_{c2}(2P))$	01211	$3927.2 \pm 2.6 [176]$	24 ± 6	$\gamma \gamma \rightarrow Z; Z \rightarrow DD$
X (3940)		$3942^{++}_{-6} \pm 6$ [41]	$37^{+20}_{-15} \pm 8$	$e^+e^- \rightarrow J/\psi + X; X \rightarrow DD^*$
Y (4008)	1	$3891 \pm 41 \pm 12$ [23]	$255 \pm 40 \pm 14$	$e \cdot e^- \rightarrow Y; Y \rightarrow \pi^+\pi^- J/\psi$
$Z_{c}(4020)$	$1^{+}?^{?-}$	4024.1 ± 1.9 [176]	13 ± 5	$e^+e^- \rightarrow \pi Z; Z \rightarrow \pi h_c$
	1 22		00+21+47	$e^+e^- \rightarrow \pi Z; Z \rightarrow D^*D^*$
$Z_1(4050)$	1-2:+	$4051 \pm 14^{+20}_{-41}$ [133]	82_{-17-22}^{+21+41}	$B \rightarrow KZ; Z \rightarrow \pi^{\pm}\chi_{c1}$
$Z_{c}(4055)$	1+ ?:-	$4054 \pm 3 \pm 1$ [148]	$45 \pm 11 \pm 6$	$e^+e^- \rightarrow \pi^+Z; Z \rightarrow \pi^{\pm}\psi(2S)$
Y(4140)	$0^{+1^{++}}$	$4146.5 \pm 4.5^{+4.6}_{-2.0}$ [125]	$83 \pm 21^{+21}$	$B \rightarrow KY; Y \rightarrow \phi J/\psi$
- ()				$pp \text{ or } p\bar{p} \to Y + \text{any.}; Y \to \phi J/\psi$
X(4160)		$4156^{+25}_{-20} \pm 15$ [41]	$139^{+111}_{-61} \pm 21$	$e^+e^- \rightarrow J/\psi + X; X \rightarrow D^*D^*$
$L_{c}(4200)$	1+1+-	4196^{+31+17}_{-29-13} [46]	$370^{+70+70}_{-70-132}$	$B \rightarrow KZ; Z \rightarrow \pi^{\pm}J/\psi$
Y(4230)	0-1	$4230 \pm 8 \pm 6 \ [149]$	$38 \pm 12 \pm 2$	$e^+e^- \to Y; Y \to \omega \chi_{c0}$
$Z_{(4240)}$	1+0	$4239 \pm 18^{+45}_{-10}$ [138]	$220 \pm 47^{+108}_{-74}$	$B \rightarrow KZ; Z \rightarrow \pi^{\pm}\psi(2S)$
$Z_2(4250)$	$1^{-?^{+}}$	$4248^{+44+180}_{-29-35}$ [133]	$177^{+54+316}_{-39-61}$	$B \rightarrow KZ; Z \rightarrow \pi^{\pm}\chi_{c1}$
Y(4260)	0-1	$4251 \pm 9 [176]$	120 ± 12	$e^+e^- \rightarrow Y; Y \rightarrow \pi\pi J/\psi$
Y(4274)	$0^{+1^{++}}$	$4273.3 \pm 8.3^{+17.2}_{-3.6}$ [125]	$52 \pm 11^{+8}_{-11}$	$B \rightarrow KY; Y \rightarrow \phi J/\psi$
X(4350)	0+??+	$4350.6^{+4.6}_{-5.1} \pm 0.7$ [170]	$13^{+18}_{-9} \pm 4$	$\gamma \gamma \rightarrow X; X \rightarrow \phi J/\psi$
Y(4360)	1	4346 ± 6 [176]	102 ± 10	$e^+e^- \rightarrow Y$; $Y \rightarrow \pi^+\pi^-\psi(2S)$
7 (1130)	1+1+-	4479+15 [176]	181 ± 21	$B \rightarrow KZ; Z \rightarrow \pi^{\pm}J/\psi$
222(4400)	1 1	410_18 [110]	101 ± 01	$B \rightarrow KZ; Z \rightarrow \pi^{\pm}\psi(2S)$
X(4500)	0+0++	$4506 \pm 11^{+12}_{-15}$ [125]	$92 \pm 21^{+21}_{-20}$	$B \rightarrow KX; X \rightarrow \phi J/\psi$
A(4630)	1	4634^{+8+5}_{-7-8} [150]	92^{+40+10}_{-24-21}	$e^+e^- \rightarrow X; X \rightarrow \Lambda_c \bar{\Lambda}_c$
Y(4660)	1	4643 ± 9 [176]	72 ± 11	$e^+e^- \rightarrow Y$; $Y \rightarrow \pi^+\pi^-\psi(2S)$
X(4700)	0+0++	$4704 \pm 10^{+14}_{-24}$ [125]	$120 \pm 31^{+42}_{-33}$	$B \rightarrow KX; X \rightarrow \phi J/\psi$
$P_{c}(4380)$		$4380 \pm 8 \pm 29$ [35]	$205\pm18\pm86$	$\Lambda_b \rightarrow KP_c; P_c \rightarrow pJ/\psi$
$P_{c}(4450)$		$4449.8 \pm 1.7 \pm 2.5$ [35]	$39 \pm 5 \pm 19$	$\Lambda_b \rightarrow KP_c; P_c \rightarrow pJ/\psi$
X(5568)		$5567.8 \pm 2.9^{+0.9}_{-1.9}$ [175]	$21.9 \pm 6.4^{+5.0}_{-2.5}$	$p\bar{p} \rightarrow X + \text{anything}; X \rightarrow B_s \pi^{\pm}$
		A.0 []	2.0	$e^+e^- \rightarrow \pi Z; Z \rightarrow \pi \Upsilon(1S, 2S, 3S)$
$Z_b(10610)$	$1^{+}1^{+-}$	$10607.2 \pm 2.0 \ [176]$	18.4 ± 2.4	$e^+e^- \rightarrow \pi Z; Z \rightarrow \pi h_b(1P, 2P)$
				$e^+e^- \rightarrow \pi Z; Z \rightarrow B\bar{B}^*$
	25.25			$e^+e^- \rightarrow \pi Z; Z \rightarrow \pi \Upsilon(1S, 2S, 3S)$
$Z_b(10650)$	1+1+-	$10652.2 \pm 1.5 [176]$	11.5 ± 2.2	$e^+e^- \rightarrow \pi Z; Z \rightarrow \pi h_b(1P, 2P)$
				$e^+e^- \to \pi Z; Z \to B^*\bar{B}^*$
V (10999)	0-1	$10801 \pm 4 [172]$	54 - 7	$e^+e^- \rightarrow Y; Y \rightarrow \pi\pi\Upsilon(1S, 2S, 3S)$
$T_b(10888)$	0 1	$10891 \pm 4 [176]$	04 ± 7	$e^+e^- \rightarrow V \colon V \rightarrow \pi\pi h_*(1P \ 2P)$

Courtesy of Ryan E. Mitchell

31

Progress in Particle and Nuclear Physics 93, 143–194 (2017) Richard F. Lebed, Ryan E. Mitchell, Eric S. Swanson (2) Heavy-Quark QCD Exotica

[arXiv:1610.04528]

organized

mass

BES

by

Y(4660): $e^+e^- \rightarrow DD$, $\Lambda_c\Lambda_c$

No evidence of Y(4660) in open charm channels.

A resonance with significance greater than 8.2 σ has been measured by Belle in baryonic decay.

B€SII

INFŃ

R.Farinelli

