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Outline

• Two applications of 
Machine Learning: 

• MRI image analysis 
and segmentation 

• reproducing the 
final state of a low 
energy nuclear 
interaction model 
(BLOB)
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MRI image analysis and segmentation
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Introduction

• The therapy for locally advanced rectal cancers is:  

• neoadjuvant chemo-radiotherapy (CRT)   

• followed by radical surgery  
 
 

• local pelvic recurrence to rate lower than 10% 
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• This therapeutic approach is an over-treatment of many patients:  

• those who do not respond to the treatment (non-responders)  

• whose early identification (2–3 weeks after the start of 
neoadjuvant CRT) might help clinicians in referring them to 
alternative treatments;  

• patients with pathological complete response 

• who could benefit from either less invasive surgery (ie, transanal 
endoscopic microsurgery) or “wait-and-watch” strategy 

However…
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The purpose

• Recognise non-responders and complete responder 
patients during the CRT (before surgery) 

• Finding new biomarkers 

• Personalize the treatment plan
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The dataset available

• 55 patients with histologically confirmed  
rectal adenocarcinoma and locally advanced tumor  
stages II (cT3-4, N0, M0) and III (cT1-4, N+, M0)  

• 3T MR images T2-weighted axial oblique  
(planes orthogonal to the rectum) 

• Images acquired in three stages: 
• just after diagnosis (pre-CRT) 
• CRT response evaluation at early phase: CRT treatment was day 40 

and tumour response was assessed with MRI at day 21 (mid-CRT) 
• pre-surgical analysis: 6 to 8 weeks after the end of CRT  (post-CRT) 

• gross specimen was analysed by pathologist 
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The dataset available

• gross specimen was analysed by pathologist  

• Surgical specimen, analysed by pathologist, to assess 
the response to the therapy: 

• 16 patients were Complete Responders (CR) 

• 27 patients were Partial Responders (PR) 

• 12 patients were Non Responders (NR)
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The dataset available

• T2-weighted MRI from high field (3T) scanner 

• ~30 slices along the rectum axis 
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Pre-CRT 
Mid-CRT 
Post-CRT

CR-classifier
NR-classifier

Region of interest (ROI) 
drawn by hand by the radiologist 
contains suspect tumor tissue 
Usually 7-10 slice per scan



The goal

• Automatically stratify the response to CRT before surgery  

• Identify Complete Responders after CRT to (possibly) 
avoid surgery (e.g. wait and watch strategy) 

• Identify Non Responders during CRT to address them to 
a more effective strategy 
 

• Two different classifiers



Software tool

• We developed a custom open-source package in python 
https://github.com/carlomt/dicom_tools 
https://pypi.org/project/dicom-tools/ 

• The software is able to: 
• read and visualize images in dicom format - import and visualize ROI 
• draw new ROIs 
• allows grey-level intensity normalization  

(histogram matching and to a pre-defined ROI) 
• implements image filters 
• implements segmentation tools  
• implements texture analysis
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dicom_tool dicom_tools 

6	

local Shannon entropy 

Laplacian 
of Gaussian filter 

Region of interest (ROI) selected 
by hand by radiologists  T2w slice 
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dicom_tool

It allows to 
open a 
python 
interactive 
shell from 
which you 
can call 
methods 
and have 
full access 
to memory
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Texture analysis

• Idea: different kinds of tissues have different texture  

• We considered so far:  
• parameters from grey-level intensity histogram 
• Haralick parameters from grey-level co-occurrence 

matrix (dissimilarity contrast, energy, correlation, 
homogeneity) 

• Local Shannon entropy 
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Textural features used in the analysis

• First order parameters are the statistical parameters of the grey-level 
intensity histogram 

• The second order parameters were computed after re-scaling the 
image to 8-bit (for computational reason) 
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First Order Second Order

Mean Minimum of the Shannon Entropy
Standard Deviation Maximum of the Shannon Entropy

Skewness Mean of the Shannon Entropy
Kurtosis Standard Deviations of the Shannon Entropy

Haralick Homogeneity

Haralick Correlation

Haralick Contrast
Haralick Energy

Haralick Dissimilarity

Table 3: Textural features used in the analysis. First order parameters are the statistical 
parameters of the grey-level intensity histogram. The second order parameters were 
computed after re-scaling the image to 8-bit (for computational reason)



Results

• Some textural parameters are significantly different on average for 
the various classes of patients 

• Distributions are wide and don't allow a separation of the classes on 
a patient basis 

• It is unknown if these 
widths are due to 
instrumental effects 
or to biological variations
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Results
• Some textural parameters are significantly different on average 

for the various classes of patients.

Dissimilarity mid-CRT

dissimilarity mid-CRT

• Distributions are wide and 
don't allow a separation of the 
classes on a patient basis

• It should be important to 
understand if these widths are 
due to instrumental effects 
or to biological variations (some 
intensity normalization schemes 
tested and discarded)



8.13 Boosted Decision and Regression Trees 125

Figure 21: Schematic view of a decision tree. Starting from the root node, a sequence of binary splits using
the discriminating variables xi is applied to the data. Each split uses the variable that at this node gives the
best separation between signal and background when being cut on. The same variable may thus be used at
several nodes, while others might not be used at all. The leaf nodes at the bottom end of the tree are labeled
“S” for signal and “B” for background depending on the majority of events that end up in the respective
nodes. For regression trees, the node splitting is performed on the variable that gives the maximum decrease
in the average squared error when attributing a constant value of the target variable as output of the node,
given by the average of the training events in the corresponding (leaf) node (see Sec. 8.13.3).

8.13.1 Booking options

The boosted decision (regression) treee (BDT) classifier is booked via the command:

factory->BookMethod( Types::kBDT, "BDT", "<options>" );

Code Example 60: Booking of the BDT classifier: the first argument is a predefined enumerator, the second
argument is a user-defined string identifier, and the third argument is the configuration options string.
Individual options are separated by a ’:’. See Sec. 3.1.5 for more information on the booking.

Several configuration options are available to customize the BDT classifier. They are summarized
in Option Tables 25 and 27 and described in more detail in Sec. 8.13.2.

Random Forest

• A classifier from the family of the decision trees 

• Robust with small data samples 

• 2000 trees, bagging fraction = 0.6 

• Training cohort = 28 patients 

• Validation cohort = 27 patients 

• Two classifiers: 

• CR classifier: discriminate CR vs other (PR+NR) 
Use pre-CRT, mid-CRT, post-CRT features 

• NR classifier: discriminate NR vs other (CR+NR) 
Use pre-CRT, mid-CRT
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Texture analysis results 

• Most significant textural features (among O(100) features in total)

Notes: 
• ranking based on the p-value of a t-student test  
• Pre=pre-CRT, Mid=mid-CRT, Post=post-CRT 

Texture analysis results 

CR vs PR+NR discrimination

Parameter CR PR+NR
min(EntropyPost)/minEntropy(Pre) (3D) 0.97 ± 0.13 2.49 ± 0.40
min(EntropyPost)-minEntropy(Pre) (3D) -0.038 ± 0.03 0.14 ± 0.05
min(EntropyPost)/minEntropy(Mid) (3D) 1.07 ± 0.13 2.41 ± 0.42
ROI area Pre (2D) 2537 ± 202 4016 ± 366
dissimilarity Mid (2D) 0.00297 ± 0.00025 0.00505 ± 0.00060
contrast Mid (2D) 0.0050 ± 0.0006 0.0098 ± 0.0013
homogeneity Mid (2D) 0.99870 ± 0.00010 0.99789 ± 0.00024
energy Pre (2D) 0.99019 ± 0.00078 0.9859 ± 0.0012

NR vs CR+PR discrimination

Parameter NR CR+PR
standard deviation Pre (3D) 123 ± 11 172 ± 8
mean(Entropy) Pre (2D) 0.618 ± 0.061 0.814 ± 0.028
stdDev(Entropy) Pre (2D) 0.4180 ± 0.0082 0.469 ± 0.011
max(Entropy) Pre (2D) 1.870 ±0.078 2.248 ± 0.056

Table 1: Average values and errors for the most discriminant textural features or textural
feature changes over time for CR vs PR+NR separation and for NR vs CR+PR separation.

The time dimension is integrated by analyzing each textural feature before164

(pre) during (21st day, mid) and after (post) the CRT. The di↵erences and165

the ratios between images taken at di↵erent times are computed. Descriptive166

statistics are provided as averages, together with their errors, over the di↵erent167

classes considered separately. In order to get an estimate of the potential sep-168

aration power of each textural feature, a t-student test (2-tails) is performed169

and the corresponding p-value computed. Table 1 reports these results for the170

features with p-value<0.01 in the configurations that provide the best perfor-171

mances, i.e. without filter and intensity cut in both the analyses. The p-value172

cut is somehow arbitrary but is needed to limit the number of features in input173

to the Random Forest. The entropy is considered at the most relevant radius,174

i.e 5 pixels for the CR vs PR+NR discrimination and 3 pixels for the NR vs175

CR+PR discrimination. In the NR vs CR+PR case the sensitive features at176

post-CRT stage are eliminated from the analysis, since we want to identify NR177

patients before CRT is over.178

The most significant feature to distinguish CR from PR+NR are related179

to entropy and to some of the Haralick parameters. Higher pre-CRT energy,180

mid-CRT homogeneity, lower mid-CRT contrast and dissimilarity are found for181

CR (all computed in 2D). The 2D tumor area pre-CRT, although not a textural182

parameter, is significantly lower for CR. The behavior of the Haralick param-183

eters can be interpreted as a more homogenous texture in the CR case. The184

behavior of the entropy is more di�cult to interpret; the strongest indication is185

9

•  We tried 2 selections: CR vs PR+NR and NR vs CR+PR  
•  Most significant textural features (among O(100) features in total) 

•  Notes: 
    - ranking based on the p-value of a t-student test 
    - Pre=pre-CRT,  Mid=mid-CRT, Post=post-CRT 
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•  Notes: 
    - ranking based on the p-value of a t-student test 
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Random Forest results

• CR Classifier accuracy 

• Area Under Curve = 0.94  

• Sensitivity   
38 ± 15 %

simple model = 
classification based only 

on tumor volume 

sensitivity =  true positive rate

                  => efficiency

specificity = true negative rate

                   => 1-contamination




Random Forest results

• NR Classifier accuracy 

• Area Under Curve = 0.86  

• Sensitivity   
18 ± 8 %

sensitivity =  true positive rate

                  => efficiency

specificity = true negative rate

                   => 1-contamination




Conclusions

• Machine Learning based analysis of quantitative features 
of T2-w MRI images is sensitive to response to CRT in 
rectal cancer 

• Distributions of  features are wide  
instrumental effects or biological variations?  

• Crucial to improve image segmentation and calibration



Morphological Watersheds

• Preliminary results are 
encouraging 

• We have to optimize all the 
parameters  

• 3D segmentation
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Segmentation with Asterism

• Asterism is a python tool developed by Andrea Tramacere 
(Observatory of Geneva) 

• Made for finding clusters in astrophysical images (Fermi)
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Histogram matching

• One image is used as template 

• It assumes the same amount of 
pixel per region in the image and 
in the template 

• Recognizes regions using the 
cumulative distribution of the 
image and the template 

• Assigns the same region color to 
the image pixels as the template
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Results of Histogram Matching
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Contrast Limited Adaptive Histogram Equalization 

• Histogram equalization for each section of the image 

• Contrast amplification is limited to avoid noise 
amplification 
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Segmentation with Deep Learning

• Identify a portion of an image given the context 

• Many deep learning applications are about object 
recognition 

• Simple task for trained humans but hard for algorithms 

• Challenge: 

• Small dataset
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ProMISe Challenge

• Prostate MR Image Segmentation 2012 

• The data includes both patients with 
benign prostatic hyperplasia and 
prostate cancer.  

• The data includes both patients with 
benign prostatic hyperplasia and 
prostate cancer.  

• 50 cases (about 500 usable slices)  

• Reference segmentation included
�28
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U-net

• developed for 
biomedical image 
segmentation 

• fully convolutional 
network  

• consists of a 
contracting path 
and an expansive 
path

U-net : Motivazioni
Hanno un input della stessa taglia 
dell’output e generalizzano il contesto.

L’idea iniziale è di passare alla rete 
intere slices di MRI
Questo approccio può far riconoscere 
le zone con posizioni poco probabile di 
zone tumorali ed escluderle 
automaticamente.
Snella (2x107 parametri) 

circa 100 mb model weight size

con12GB 8-16 slice per batch
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Data augmentation

• Essential to teach the network the desired invariance and 
robustness properties  

• Especially when few training samples are available  

• Shift and rotation  

• Deformations and intensity variations  

• Random elastic deformations 
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Modifications of U-net

• All Drop-Out 
• 30 M parameters  
• dropout after every 

convolutional  

• InvertedNet 
• less parameters 
• 1.4 M parameters 

InvertedNet vs. All Drop-Out

InvertedNet All Drop-Out

Parameters 1.4 M 31 M
AUC 0.93 0.90
Mean Dsc 0.82 0.83
Mean 
Volumetric 
Dsc

0.80 0.82

Volumetric 
Dsc std

0.1 0.09
[img. from: A.Novikov et al. 

arXiv:1701.08816v4]
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Cost function and its optimisation

• Dice's coefficient (or Sørensen index, or also similarity coefficient) is 
for estimating the similarity of two samples  

• It equals twice the number of elements common to both sets divided 
by the sum of the number of elements in each set: 
 
 

• Optimised using Adam (Adaptive Moment estimation),  
a stochastic gradient descent algorithm  

• The speed is function of the running averages of the gradients and 
the second moments of the gradient
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Results - Inverted Net
Inverted Net (1.4 M parameters)

Inverted Net (1.4 M parameters)Inverted Net (1.4 M parameters)

Inverted Net (1.4 M parameters)

• 1.4 M 
parameters  

• 38 patients for 
training 

• 16 for test
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All Drop-Out (30 M p.)

All Drop-Out (30 M p.)

All Drop-Out (30 M p.)

Results - All Drop-Out

• 30 M 
parameters  

• 4 times 
slower than 
InvertedNet

�34



Summary

• MR Images could be analysed to find features not-visible 
even to trained Medical Doctors 

• We developed a tool to import images converting them to 
3D numerical tensors 

• It allows to pre-process the data and compute texture 
parameters 

• We started to apply Deep Learning algorithms
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Conditional Variational Auto Encoder (VAE)  
to simulate accurately low energy nuclear interactions
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Geant4 (GEometry ANd Traking)

• Developed by an International Collaboration  

• Established in 1998 

• Approximately 100 members, from Europe,  
US and Japan 

• http://geant4.org 

• Open source 

• Written in C++ language 

• Takes advantage from the  
Object Oriented software technology

[Geant4, a simulation 
toolkit Nucl. Inst. and 

Methods Phys. Res. A, 
506 250-303 

Geant4 developments 
and applications 

Transaction on Nuclear 
Science 53, 270-278]
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Geant4 applications

• Nuclear Physics experiments 

• High Energy Physics 

• but also: 

• Hadrontherapy 

• Radiobiology 

• and many others…
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Geant4 applications: hadrontherapy

• Hadrontherapy: 

• External radiation therapy using 
strongly interacting particles to treat 
mainly tumour 

• Mainly with p and C ions

• MC codes are used to: 

• Generate input parameters of the treatment planning 
algorithms 

• Validate the dose calculation of such algorithms 

• Estimate the production of b emitters, such as 11C and 15O 

• Link the production of prompt g with the dose distribution
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Geant4 applications: radiobiology

• To link the physical dose 
deposited to the biological 
effectiveness 

• Geant4 has a dedicated 
package for modelling 
early biological damage 
induced by ionising 
radiation at the DNA scale 
(Geant4-DNA)

1868 U Amaldi and G Kraft

Figure 2. The structure of a proton and a carbon track in nanometre resolution are compared with
a schematic representation of a DNA molecule. The higher density of the secondary electrons,
produced by carbon ions, creates a large amount of clustered DNA damage.

highly protected by an extremely elaborate repair system so that DNA violations, like single
or double strand breaks, are rapidly restored. But when DNA is exposed to very high local
doses—where local refers to the scale of a few nanometres as shown in figure 2—the DNA
lesions become concentrated or clustered and the repair system fails to correct the damage. In
this case, the dose is more effective compared with sparsely ionizing radiation and the RBE is
larger than 1.

It has been shown, for carbon beams, that the location of elevated RBE coincides with
the Bragg maximum. In particular, for many cells and many biological reactions, the RBE
becomes definitely larger than 1 (i.e. these ions are much more effective than photons or
protons) when the LET becomes greater than about 20 keV µm−1, i.e. in the last 40 mm of
a carbon track in water or in biological tissue. While in the initial part of an approximately
20 cm range in matter (what is called by radiotherapists ‘the entrance channel’), the LET is
smaller than 15 keV µm−1 and the ionization density produces mostly repairable damage. The
reason why a LET of 20 keV µm−1 is so discriminating can be very qualitatively understood as
in a few nanometre thickness of a fibre, a few nanometres thick, made of a DNA helix and the
water molecules that surround it, 20 keV µm−1 corresponds to an average energy deposition
of 100–200 eV that causes, on average, the production of a dense cluster of 4–5 ionizations.

The LET values of light ions are summarized in table 2 for the range corresponding to
200 MeV protons (262 mm of water). One can see that the LET of carbon ions is larger than
20 keV µm−1 in the last 40 mm of their range in water, while for helium this only happens
in the last millimetre. For protons, the range of elevated effectiveness is restricted to a few
micrometres at the end of the range—too small to have a significant clinical impact. For ions
heavier than carbon the range of elevated RBE starts too early and extends to the normal tissues
located before the tumour. After the work done at Berkeley with neon and helium ions, in the
beginning of the 1990s, carbon ions were chosen as optimal for the therapy of deep-seated
tumours as the increased biological effectiveness, owing to the variation of the LET along the
track, could be restricted mainly to the target volume [21].

The RBE depends upon the position along the single-track Bragg peak and thus also
along a SOBP, as shown by the in vitro measurements reproduced in figure 3. To obtain a
flat ‘biological’ dose along the peak, it is necessary to have a non-uniform distribution of the
‘physical dose’, as shown in the left panel of figure 3.

The RBE effects are the combination of a physical effect, the ionization density, and of a
biological phenomenon, the DNA repair capacity of the cell. Because of the high effectiveness

image from: U. Amaldi and G. Kraft,  
Rep. Prog. Phys., vol. 68, no. 8, pp. 1861–1882, Jul. 2005.

user example, named “extended/medical/dna/clustering”. To check
the consistency of this new clustering algorithm, results of
simulations performed under the same conditions as those of Francis
et al. are presented. A box of 1 μm × 1 μm × 0.5 μm made of liquid
water is irradiated with protons with energy ranging from 500 keV
to 50 MeV. Simulations are performed using the default
“G4EmDNAPhysics” physics constructor. The probability that an in-

teraction point falls within a sensitive region is fixed to 0.2 (Francis
et al. have used a value of 0.16), and the probability that the energy
deposit induces a damage varies linearly between 5 eV and 37.5 eV
(as in Francis et al.). The maximum limit distance to merge points
was tuned to reproduce the DSB/SSB ratio published for DBSCAN
[89] and PARTRAC [90]. We found that this distance could be set
at 3.3 nm to reproduce published data, as presented in Fig. 10a,
whereas Francis et al. used 3.2 nm. These differences may be at-
tributed to the difference between physical models as we found that
the distance criterion in our algorithm was dependent on the elastic
scattering model. In addition to the number of single, complex single
and double strand breaks, our clustering user application stores the
cluster size distribution corresponding to the result of the merging
procedure as presented in Fig. 10b.

Figure 7. The 5-compaction levels of the DNA molecule description used in the example “extended/medical/dna/wholeNuclearDNA”: double helix around the histone protein
(nucleosome) (two views on top row), B-type chromatin fiber (center row), chromatin loops (bottom left row) and chromosome territories within an ellipsoidal cell nucleus
(bottom right row). Geometry implementation is further described in [80].

Figure 8. Two linked nucleosomes in a newly developed Geant4 geometry of the
DNA molecule.

Figure 9. Rendering of the atomistic view of a dinucleosome irradiated by a single
100 keV proton using the “extended/medical/dna/pdb4dna” Geant4-DNA example
(see details in [81]).

871M.A. Bernal et al./Physica Medica 31 (2015) 861–874

atomistic view of a dinucleosome 
irradiated by a single 100 keV proton 
Image from M. A. Bernal et al Physica Medica, vol. 31, no. 8, pp. 

861–874, Dec. 2015.
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Geant4, further applications

• Radio-protection in space mission 

• Shielding for satellites 

• Single event upset and radiation 
damages to electronics 

• Simulations for nuclear spallation 
sources 

• Radioactive waste

1 ESA UNCLASSIFIED – For Official Use               Geant4 SUWS, 26.8.2015 

ESA Geant4 R&D activities 
 
Petteri Nieminen, Giovanni Santin, 
Hugh Evans, Piers Jiggens 
 
Space Environments  
and Effects Section 
European Space Agency 
ESTEC 
 
Geant4 Space Users’ Workshop,  
Hiroshima, 26 August 2015 

 
 
 

Figure from M. Sawant, COTS Journal Jan. 2012

Space radiation protection

The	components	of	space	radiation	that	are	of	

concern	are	high	energetic	charged	particles,	

especially	protons from	the	Sun		and	heavier	

ions	from	galactic	cosmic	rays

(C2H4)n	is	foreseen	to	be	used	in		

spacecraft	shielding.

Corresponding	fragmentation	cross	

sections	are	important	for	dose	

estimate	to	the	astronauts

Energy:	

100	MeV/n	to	10	GeV/n

Projectiles:

H,	He,	C,	O,	Si	and Fe	

Norbury,	 J.	W.	et	al.	"Review	of	nuclear	physics	 experimental	

data	for	space	radiation." Health	physics 103.5	(2012):	640-642.

FOOT	could	explore	He,	C,	O	

beams	@		100-400	MeV/u

First slide of the talk “ESA Geant4 R&D Activities 
from the Geant4 Space User Workshop 

Hiroshima, 26 August 2015
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Problems below 100MeV/A
• Despite the numerous and relevant application 

would use it, there is no dedicated model to 
nuclear interaction below 100 MeV/A in Geant4 

• Many papers showed the difficulties of Geant4 in 
this energy domain: 

• Braunn et al. have shown discrepancies up to 
one order of magnitude in 12C fragmentation 
at 95 MeV/A on thick PMMA target  

• De Napoli et al. showed discrepancy specially 
on angular distribution of the secondaries 
emitted in the interaction of 62 MeV/A 12C on 
thin carbon target 

• Dudouet et al. found similar results with a 95 
MeV/A 12C beam on H, C, O, Al and Ti targets

Cross section of the 6Li production at 2.2 
degree in a 12C on natC reaction at 62 MeV/A.

[Plot from De Napoli et 
al. Phys. Med. Biol., vol. 

57, no. 22, pp. 7651–
7671, Nov. 2012]

• Exp. data
• G4-BIC 
• G4-QMD
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Update of a 12C fragmentation benchmark

• 62 MeV/A 12C on  
thin carbon target 

• doubly differential  
cross sections 

• INCL was not  
available at the  
time of the original publication

[Update of the benchmark 
originally published on De 

Napoli et al. Phys. Med. 
Biol., vol. 57, no. 22, pp. 
7651–7671, Nov. 2012]
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Fig. 3 Double differential cross
section of 3H production in the
interaction of 12C with a thin natC
target at 62 MeV/A emitted at the
angles hlab ¼ 11:4", 14:4", 17:2",
and 19:4". The green functions
shows the BIC prediction, in red
the QMD and in blue INCL.
For BIC and QMD the lighter
colours are for Geant4 version
10.4, while the darker are for
Geant4 version 9.4.p1. In black
the experimental data
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for Geant4 version 9.4.p1. In
black the experimental data
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[C. Mancini-Terracciano et al. IFMBE 
Proceedings Series 68/1 (2018), pp. 675–685. 

doi: 10.1007/978-981-10-9035- 6_126]
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Update of a 12C  
fragmentation 
benchmark

[Update of the benchmark 
originally published on De 

Napoli et al. Phys. Med. 
Biol., vol. 57, no. 22, pp. 
7651–7671, Nov. 2012]
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[C. Mancini-Terracciano et al. 
IFMBE Proceedings Series 68/1 

(2018), pp. 675–685. doi: 
10.1007/978-981-10-9035- 6_126]

8 C. Mancini-Terracciano et al.
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Fig. 4. Double di↵erential cross section of 4He production in the interaction of 12C
with a thin natC target at 62 MeV/A emitted at the angles ✓lab = 2.2�, 4.9�, 7.6�,
14.4�, 18�, and 21.8�. The green functions shows the BIC prediction, in red the QMD
and in blue INCL. For BIC and QMD the lighter colours are for Geant4 version 10.4,
while the darker are for Geant4 version 9.4.p1. In black the experimental data.
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About GeNIALE (Geant Nuclear Interaction At Low Energy)

• Aims at improving the capacity of Geant4 to 
simulate low energy nuclear reactions 

• Granted by the INFN  
National Scientific Committee 5 (CSN5) 

• CSN5 is devoted to technological and  
inter-disciplinary research
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• The core of GeNIALE is the implementation in Geant4 of a new 
model for the first stage of the interaction between a hadron -or a 
nucleus- and a target nucleus  

• Such a model will be coupled with the models already implemented 
in Geant4 for the second stage, and with the Geant4 framework in 
general



Suitable models

• Developed by Maria Colonna  
(INFN LNS, Catania) 

• describes the time evolution of the 
density distribution  

• involves the implementation of an 
effective attractive mean-field nuclear 
interaction 

• mean-field is self-consistent, 
depends on the density 

• includes two-bodies correlations 
through nucleon-nucleon collisions
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• Implemented by Paolo Napolitani  
(IPN, Orsay) 

• Derived from SMF 

• Adds fluctuations in the dynamics 
treating the nucleon-nucleon 
collisions as a stochastic process

SMF (Stochastic Mean Field)
BLOB  

(Boltzmann-Lagevein  
One Body)



SMF and BLOB

BLOBSMF 100 test particles per nucleon  
12C on 12C at 62 MeV/n
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Geant4 interface to SMF and BLOB

• Dummy G4-model, loads the output from SMF/BLOB 

• Sample the final state 

• Fragments mass and charge 

• Gas particles emitted 

• Applies Geant4 de-excitation to excited fragments
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Interfacing SMF and BLOB to Geant4

• SMF and BLOB 
had been 
interfaced with 
Geant4 and its de-
excitation phase 

• Similar results 
between SMF and 
BLOB • BLOB 

• SMF
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Interfacing SMF and BLOB to Geant4

• SMF and BLOB 
had been 
interfaced with 
Geant4 and its de-
excitation phase 

• Similar results 
between SMF and 
BLOB
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Coalescence

• To insert more than two bodies correlation in an  
effective way 

• Implemented between SMF/BLOB and the de-excitation 
phase 

• Two small fragments are coalesced if Dx<6 fm 

• Applied recursively 
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Preliminary results with BLOB and Geant4

• tritium 

• Increasing the 
test particles 
number (from 
100 per 
nucleon to 500 
per nucleon) 
the excitation 
energy is 
better 
estimated
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Preliminary results with 
BLOB and Geant4

• alpha 

• It is not possible 
to increase the 
number of test 
particle also in 
SMF
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Code optimisations

• Optimisation of the function “lapla” without changing the code structure  

• 68% speed-up in the function  

• 52% speed-up overall
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Using OpenMP

• Distributing the main loop of the “lapla” 
on 24 cores 

• Small gain overall 

• A lot of time spent in distributing data
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Using Variational Auto Encoder

• Despite the optimisation, BLOB is still too slow 

• The idea: 

• Bin the PDF output of BLOB 

• Creating a 3D “image” 

• Train a Variational Auto Encoder to reproduce such 
“images” 

• Condition the VAE to impact parameter



Conditioning to b

• Taking inspiration from: 
 
 

• VAE for generating new chemical 
compounds with properties that are 
of interest for drug discovery  

• To organize latent space w.r.t 
chemical properties they jointly 
trained the VAE with a predictor 

• It predicts these properties from 
latent space representations

[Automatic chemical design using a data-driven 
continuous representation of molecules, 

Gómez-Bombarelli at al. arXiv:1610.02415]



Conditional VAE

• Convolutional 3D encoding 

• Conditioned latent space 

• Symmetric decoding
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Training dataset

• The BLOB final state is a list with the position in the phase 
space of fragments and gas particles 

• Fragments: A and Z (real), P, Q and Excitation energy 

• Gas particles: Z, P and Q. Each represent a 1/500 probability 
of having a nucleon in that position of phase space 

• 1 000 events 

• Generated with linear impact parameter 

• 90% for training and 10% of them for test
�59



Reducing dimensionality

• Only events with 2 fragments are 
considered 

• We divided the test particles in two 
samples: 

• Projectile like (red) 

• Target like (blue) 

• sin(q) instead of q to:  

• have same sign 

• enhance small angles
�60
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Reducing dimensionality

• To reduce the dimensionality and 
use the keras 3D kernels 

• We consider only: 

• The modulus of the 
momentum 

• its angle with the collision axis 

• The distance of each test 
particle with the fragment 
center
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Reducing dimensionality

• Fragments are represented by 
500*A particles 

• P is sampled with gaussian 
distribution: 

• mean = Pfrag  

• sigma = Excitation energy 

• All with the same q 

• r = 0
�62

0 100 200 300 400 500 600
P  [MeV]

1

10

210

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
)θsin(

1

10

210

310

0 5 10 15 20 25 30 35 40
r  [fermi]

1

10

210

310

P

sin(q)

r



Testing reconstruction

• Fragments are 
identified selecting 
r<1fermi 

• Momentum = average 

• Excitation energy = 
variance 

• q = average
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Testing reconstruction

• Lack of particles at 
mid rapidity 

• Underestimation of 
neck events 

• Because of 
coalescence not 
active
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b  [fermi]

1−10

Testing reconstruction

• Lack of particles at 
large angle 

• Because of the 
request of 2 
fragments
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Testing reconstruction

• Same on deuterium 

• Next step will be add 
a 3rd channel for 
neck particles 

• And clustering 
algorithm
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With coalescence

• Using the coalescence  

• The mid rapidity lack is 
mitigated 0 20 40 60 80 100
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With coalescence

• Also for deuterium
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Challenges

• Sparse 

• Large input  
(1283 numbers) 

• Small dataset (for the 
moment) 

• Impact parameter 
distribution non 
uniform (for the 
moment)
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Latent space

• 40 epochs of training 

• Events with similar 
impact parameters are 
close in latent space 

• Especially the events 
with very large impact 
parameters
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Output distributions

• The generated distributions 
(green) looks similar to the input  
(blue) 

• The generated event has been 
generated sampling two 
gaussian in latent space with: 

• means = position of the input 

• sigmas = 0.1
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Next steps

• Generate dedicated input from BLOB 

• At least two order of magnitudes more events 

• Uniform b 

• Clustering test particles in 3 groups  
(Projectile like, Target like and neck) 

• I.e.: 3 channels images 

• Train a classifier to identify b from 3D distributions
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Next steps

• Condition the VAE to two parameters: b and primary E 

• Train it with different energies 

• Couple the generated model with Geant4 (in C++) 

• Benchmark with data at different energies
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