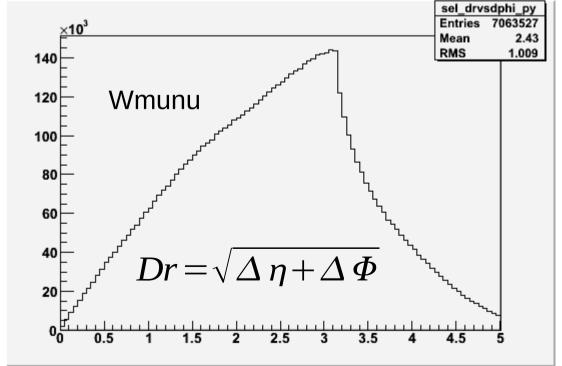
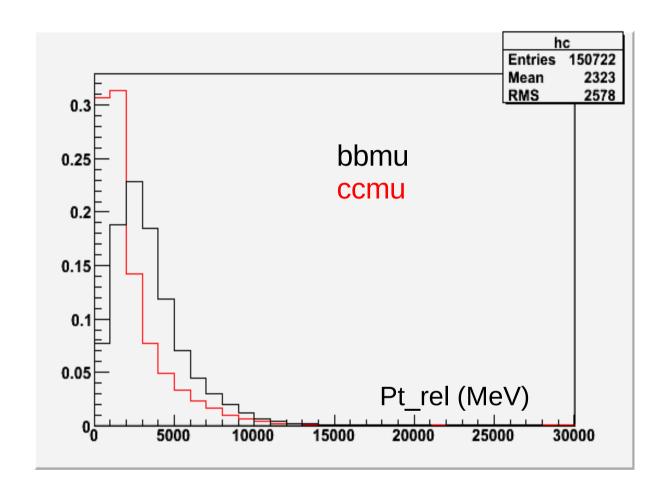
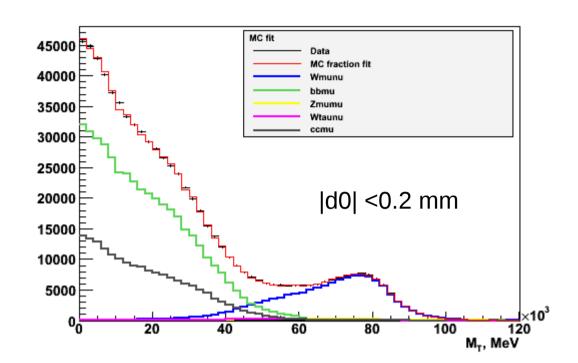
<u>Determinazione fondi ccmu15X e bbmu15X</u>


Possibile usere algoritmi gia' esistenti per il flavour tagging, ma si basano sulla ricostruzione dei jet --> perdita in efficienza, misura non inclusiva

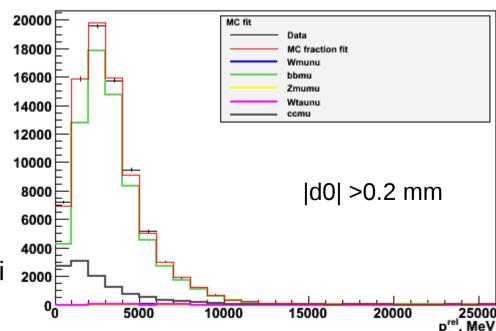

Uno degli algoritmi si basa sul pt del muone relativo all'asse del jet (maggiore per i bjet, a causa della massa maggiore dei mesoni B rispetto ai mesoni C)

L'idea e' sfruttare il pt del muoni relativo ad un asse di un "jet" costruito con traccie dell'ID:


- 1. Si apre un cono di 0.4 intorno al mu del W selezionato
- 2. Si fa una media pesata in pt della direzione delle traccie nel cono
- 3. Si calcola il pt del muone relativo a quest'asse



La separazione e' buona e la distribuzione in pt_rel puo' essere usata nella sideband |d0|>0.2mm per fissare i bbmu e i ccmu


Wmunu 0.1578 +- 0.0027 bb 0.6067 +- 0.0067 Zmumu 0.0095 +- 0.0051 Wtaunu 0.0053 +- 0.0021 cc 0.2267 +- 0.0066

Frazione vere:

Wmunu 0.1523 bb 0.6015 Zmumu 0.0073 Wtaunu 0.0067 cc 0.2321

Il fit si basa presantemente sulle shape MC, da controllare nei dati con variabili indipendenti (etcone,...)

Studi di sistematica su scala di etmiss

Usando per i "dati" METFinal invece di METRefFinal il fit peggiora (frazione per Zmumu viene negativa)

Frazione vere:		Fit:	
Wmunu	0.1523	0.1695 +-	0.00 44
bb	0.6015	0.6020 +-	0.0068
Zmumu	0.0073	-0.00416 +-	0.0085
Wtaunu	0.0067	0.0029 +-	0.0030
CC	0.2321	0.2.412 +-	0.0069

Troppo pessimistico 2 calibrazioni cosi' diverse per dati e MC? Si puo' tentare di applicare la rozza calibrazione dallo Zmumu, gia' implementata, a entrambi i dati e il MC.

Meglio, si puo' applicare un errore del 10% sulla scala, come riportato nella nota CSC dallo studio del $Z->_{\pi}$.

Da fare:

- •usare la scalibrazione 1day per il W appena i d3pd sono pronti
- •usare la scala e la risoluzione in momento dallo Z e applicaral al MC del W.

Con quale statistica? Per il momento sto lavorando con i dati corrispondenti a 25pb⁻¹, data la statistica disponibile dei d3pd per il Wmunu.

•Fare mappe di efficienze per i tagli usati:
per la regione del segnale i tagli sono il trigger, 1 mu con
pt>20 GeV associato a traccia che ha dato il trigger mu20.
Non ho usato l'isolamento ne' taglio su etmiss
(data la scalibrazione di ~ 3 GeV)
Per la regione di fondo (d0>0.2mm) si usa uno variabile di isolamento.
Mappa di efficienza anche per il fondo? Non credo, se la shape non viene modificata dai pesi.