"Astrophobic Axions" Decoupled from Nucleons and from Electrons

```
KSVZ axions are decoupled from the leptons (g_{ae} \approx 0)
Coupling to nucleons are model independent (g_{aN} \neq 0)
```

```
DFSZ axions couple to the leptons (g_{ae} \neq 0)
Coupling to nucleons nonzero but model dependent (g_{aN} \neq 0)
```

Generalized DFSZ axions can (approximately) decouple from nucleons $(g_{aN} \approx 0)$ and from electrons $(g_{ae} \approx 0)$

The two conditions for "Nucleophobia"

From the UV theory we have: $\mathcal{L}_q = \frac{\partial_\mu a}{2f_a} \, c_q \, \bar{q} \gamma^\mu \gamma_5 \, q. \quad \text{We want:} \quad \mathcal{L}_N = \frac{\partial_\mu a}{2f_a} \, C_N \, \bar{N} \gamma^\mu \gamma_5 \, N$

$$\mathcal{L}_q = \frac{\partial_{\mu} a}{2f_a} \, \mathbf{c_q} \, \bar{q} \gamma^{\mu} \gamma_5 \, q.$$

$$\mathcal{L}_N = \frac{\partial_{\mu} a}{2f_a} \, \frac{C_N}{C_N} \, \bar{N} \gamma^{\mu} \gamma_5 \, N$$

 C_N in terms of c_q and of matrix elements $s^{\mu}\Delta_q = \langle N|\bar{q}\gamma^{\mu}\gamma_5q|N\rangle$ by matching the matrix elements of L_q and L_N . One obtains:

(1):
$$C_p + C_n = (c_u + c_d) (\Delta_u + \Delta_d) - 2\delta_s$$
 [$\delta_s \approx O(10\%)$]
(2): $C_p - C_n = (c_u - c_d) (\Delta_u - \Delta_d)$

$$[\delta_s \approx O(10\%)]$$

$$(2): C_p - C_n = (c_u - c_d) (\Delta_u - \Delta_d)$$

So that, independently of the matrix elements:

(1):
$$C_p + C_n \approx 0$$
 if $c_u + c_d = 0$
(2): $C_p - C_n = 0$ if $c_u - c_d = 0$

(2):
$$C_p - C_n = 0$$
 if $c_u - c_d = 0$

Redefine the Condition: Cu + Cd = 0

Therefore:
$$c_u + c_d = \frac{X_u + X_d}{N} - 1$$

$$\begin{array}{ccc}
 & universality & \frac{1}{n_g} & \frac{1}{n_g} & 1 \neq 0 \\
N = n_g(X_u + X_d) & n_g
\end{array}$$

First Condition: Cu + Cd = 0

Nucleophobia unavoidably requires DFSZ-type of models with generation dependent PQ charges

such that the contribution to the anomaly from the two heavier generations vanishes: $N_{tot}=N_{(1^{st}gen)}$

Nucleophobia is not possible for KSVZ-type of models

Second Condition: Cu - Cd = 0

Scalar content of DFSZ models: H_1 , H_2 , Φ_a with VEVs v_1,v_2,v_a ($v_1^2+v_2^2=v^2$) and PQ charges X_1 , X_2 , $X_a=(X_1-X_2)(1/2)$

$$c_u - c_d = \frac{(\mathcal{X}_{u_R} - \mathcal{X}_{u_L}) - (\mathcal{X}_{d_R} - \mathcal{X}_{d_L})}{2N_\ell} - \frac{m_d - m_u}{m_d + m_u}$$
$$= -\frac{\mathcal{X}_1 + \mathcal{X}_2}{\mathcal{X}_2 - \mathcal{X}_1} - \left(\approx \frac{1}{3} \right)$$

Goldstone of Hyperchage: $\phi_y = (v_2 \phi_2 - v_1 \phi_1)/v$

$$\sum_{i} \mathcal{X}_{i} Y_{i} v_{i}^{2} = 0$$

$$\Rightarrow \mathcal{X}_{1} v_{1}^{2} + \mathcal{X}_{2} v_{2}^{2} = 0$$

To avoid $a-\phi y$ redefine the charges $X_1=v_2^2/v^2=s_3$; $X_2=v_1^2/v^2=c_3^2$

The (tuned) choice: $X_u - X_d = X_2 - X_1 = 1/3 - x_b = 2/3$ allows (in principle) for a complete a-N decoupling

SUMMARY PLOT

