"Astrophobic Axions" Decoupled from Nucleons and from Electrons

KSVZ axions are decoupled from the leptons $(g_{ae} \approx 0)$ Coupling to nucleons are model independent $(q_{aN} \neq 0)$

DFSZ axions couple to the leptons $(q_{ae} \neq 0)$ Coupling to nucleons nonzero but model dependent $(q_{aN} \neq 0)$

Generalized DFSZ axions can (approximately) decouple from nucleons ($g_{aN} \approx 0$) and from electrons ($g_{ae} \approx 0$)

The two conditions for "Nucleophobia"

From the UV
$$
\mathcal{L}_q = \frac{\partial_\mu a}{2f_a} c_q \bar{q} \gamma^\mu \gamma_5 q
$$
. We want: $\mathcal{L}_N = \frac{\partial_\mu a}{2f_a} C_N \bar{N} \gamma^\mu \gamma_5 N$
theory we have:

 C_N in terms of c_q and of matrix elements $s^{\mu} \Delta_q = \langle N|\bar{q} \gamma^{\mu} \gamma_5 q|N \rangle$ by matching the matrix elements of *L*q and *L*N. One obtains:

(1):
$$
C_p + C_n = (c_u + c_d) (\Delta_u + \Delta_d) - 2\delta_s
$$
 [$\delta_s \approx O(10\%)$]
(2): $C_p - C_n = (c_u - c_d) (\Delta_u - \Delta_d)$

So that, independently of the matrix elements:

(1):
$$
C_p + C_n \approx 0
$$
 if $c_u + c_d = 0$
(2): $C_p - C_n = 0$ if $c_u - c_d = 0$

Redefine the Condition: C_{U} + C_{d} = 0

First Condition: $Cu + Cd = 0$

Nucleophobia unavoidably requires DFSZ-type of models with generation dependent PQ charges

such that the contribution to the anomaly from the two heavier generations vanishes: Ntot=N(1stgen)

Nucleophobia is not possible for KSVZ-type of models

Second Condition: C_{U} - C_{d} = 0

Scalar content of DFSZ models: H_1 , H_2 , Φ_a with VEVs v_1 , v_2 , v_a (v_1 ²+ v_2 ²= v ²) and PQ charges X_1 , X_2 , X_a = $(X_1 - X_2)$ (1/2)

$$
c_u - c_d = \frac{(\mathcal{X}_{u_R} - \mathcal{X}_{u_L}) - (\mathcal{X}_{d_R} - \mathcal{X}_{d_L})}{2N_{\ell}} - \frac{m_d - m_u}{m_d + m_u}
$$

=
$$
-\frac{\mathcal{X}_1 + \mathcal{X}_2}{\mathcal{X}_2 - \mathcal{X}_1} - \left(\approx \frac{1}{3}\right)
$$

Goldstone of Hyperchage: $\phi y = (v_2 \phi_2 - v_1 \phi_1)/v$

$$
\sum_i \mathcal{X}_i Y_i v_i^2 = 0
$$

$$
\Rightarrow \mathcal{X}_1 v_1^2 + \mathcal{X}_2 v_2^2 = 0
$$

To avoid a - φ y redefine the charges $X_1 = v_2^2/v^2 = s_0^2$; $X_2 = v_1^2/v^2 = c_0^2$

 $\mathbf{The} \text{ (tuned) choice: } X_u - X_d = X_2 - X_1 = 1/3 \implies c^2\beta = 2/3$ **allows (in principle) for a complete a-N decoupling**

SUMMARY PLOT

