π⁰ Single Spin Asymmetries Measurements with CLAS

Mher Aghasyan 19 October 2009 LNF-INFN

Contents

- SIDIS data analysis
 - MC studies
 - Multiplicity
 - Background studies
- Physics results
 - SSA kinematical dependences
- Conclusions

Semi-Inclusive DIS kinematics

v = E - E' $Q^{2} = (l - l')^{2}$ y = v/E $x = Q^{2}/2Mv$ $z = E_{h}/v$

 $\frac{d\sigma_N}{dxdydzd\phi_h dP_T} \sim DF(x,k_T) \times \sigma(y) \times FF(z,P_T)$

distribution functions : probability to find a **u**quark with a momentum fraction *x* fragmentation function probability for a **u**-quark to produce a hadron with momentum fraction *z*

BSA in SIDIS

$$\frac{d\sigma_{UU}}{dxdydz} \sim (1 - y + y^2/2)f_1(x)D_1(z)$$
$$\frac{d\sigma_{LU}}{dxdydzd\phi_h dP_{h\perp}^2} = \lambda_e \sqrt{y(1 - y)}\sin\phi_h F_{LU}^{\sin\phi_h}$$

$$D_1, H^{\perp}$$
 - Leading twist fragmentation functions
 e, g^{\perp} - Higher twist distribution functions

$$A_{LU}^{\sin(\phi_h)} = \frac{\sigma_{LU}}{\sigma_{UU}} \sim f(y)$$

$$f(y) = \frac{y\sqrt{1-y}}{1-y+y^{2}/2}$$

4

π^0 identification

Much higher background for semi-inclusive events than for exclusive.

For each bin $IM(\gamma\gamma)$ have been fitted with Gaussian plus linear polinom.

CLAS data vs LUND MC

MC-simulation based on LUND provides satisfactory description of the data

Asymmetry extraction and fitting in MC

MC reconstructed moments is consistent with generated

Asymmetry in MC

0.175 0.175 0.15 0.125 0.1 0.125 0.1 0.125 0.1 0.075 0.05 0.05 0.025 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 PT

Asymmetry extraction procedure checked on MC and there is no acceptance effects on asymmetry.

Background behavior

Background fraction is independent on helicity Background fraction decreases with increase of z

Asymmetry extraction and fitting

Missing mass vs z

For further analyses safe cuts 0.4<z<0.7 and MM(x)>1.4 GeV have been applied

Comparison with HERMES

Comparison with HERMES

Agreement is good within the error bars. Systematic uncertainties calculated from background subtraction and fitting procedures.

"/f(y) correction factor is applied!
$$f(y) = \frac{y\sqrt{1-y}}{1-y+y^2/2}$$
"

π^0 and π^+

 π^0 and π^+ asymmetries are comparable, indicating that Sivers mechanism is providing dominating contribution (Collins function suppressed for π^0).

A_{LU} vs z and P_T for different x_B bins

Sivers type contribution ?

Conclusions

- SIDIS MC consistent with data.
- Asymmetry extraction procedure checked (dependence on binning and fitting procedures).
- Significantly improved SSA measurement for semi- inclusive π^0 .
- Asymmetry versus z, P_T and x_B extracted.
- Comparison of π^0 and π^+ SSA indicates that Sivers mechanism is dominant.
- More analyses underway with 2009 data!

Support slides

A. Afanaseva, E. Carlson, arXiv:hep-ph/0603269v2 (2006)

FIG. 6: The distribution function $g^{\perp}(x, \vec{\Delta}_{\perp}^2)$ for $|\vec{\Delta}_{\perp}| = 0.4$ GeV. The two special cases are described in detail in the text. A short summary is that the nucleon in the quark+diqurk pole case is overall electrically neutral, and in the quark+proton pole case has unit charge. In both cases all flavors of quark in the final state are summed.

N/q	U	L	Т
U	f ₁		h_1^{\perp}
L		g1L	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1 , h_{1T}^{\perp}

Table 1: Leading twist transverse momentum dependent distribution functions. The U,L,T correspond to unpolarized, longitudinally polarized and transversely polarized nucleons (rows) and quarks (columns)

N/q	U	L	Т
U	f^{\perp}	g^{\perp}	h, e
L	f_L^{\perp}	g_L^{\perp}	h_L , e_L
Т	$ f_T , f_T^{\perp} $	g_T , g_T^{\pm}	h_T , e_T , h_T^{\perp} , e_T^{\perp}

Table 2: Twist-3 transverse momentum dependent distribution functions. The U,L,T correspond to unpolarized, longitudinally polarized and transversely polarized nucleons (rows) and quarks (columns)

$$\begin{split} F_{LU}^{\sin\phi_h} &= \frac{2M}{Q} \, \mathcal{C} \left[-\frac{\tilde{h} \cdot k_T}{M_h} \left(xe \, H_1^\perp + \frac{M_h}{M} \, f_1 \frac{\tilde{G}^\perp}{z} \right) + \frac{\tilde{h} \cdot p_T}{M} \left(xg^\perp D_1 + \frac{M_h}{M} \, h_1^\perp \frac{\tilde{E}}{z} \right) \right] \\ & \frac{\tilde{G}^\perp}{z} &= \frac{G^\perp}{z} - \frac{m}{M_h} \, H_1^\perp, \\ & \frac{\tilde{E}}{z} &= \frac{E}{z} - \frac{m}{M_h} \, D_1, \end{split}$$

18

RC

QEDRadiativeCorrectionsin Processes of Exclusive Pion Electroproduction A. Afanaseva, I. Akushevichb, V. Burkerta, K. Jooa arXiv:hep-ph/020813v1 (2002)

FIG. 7: W-dependence of the beam polarization asymmetry in neutral pion production. The solid (dashed) curve denote the asymmetry with (without) RC. MAID2000 was used to compute the structure functions.

Multiplicity z dependence from e1dvcs

