RICH simulation for CLAS12

Contalbrigo Marco INFN Ferrara Luciano Pappalardo INFN Ferrara

RICH detector

M. Contalbrigo

Simulation with realistic phase space

To detemine the best photon detector size, π ,K,p have been generated at the LTCC-RICH entrance window according with a realistic phase space distribution of reconstructed momenta and angles.

Monte Carlo studies: framework

- Old GEANT3/Fortran/PAW based MonteCarlo framework the same used the for the development of the Hall A Proximity RICH but with different geometry and size!
- Charged particles phase space at the LTCC-RICH entrance window from CLAS simualtion, same distribution for π,k,p
- Use arcs as radiator and detector geometries (see next)
- Limitation on photon production (~3000) old memory constraint. This becomes relevant for radiator thickness > 2.5-3.0 cm

Main output parameter: $\sigma_{k\pi}$ = mean error on Cherenkov angle reconstruction of k and π

$$\sigma_{\mathbf{K}-\pi} = (\sigma_{\mathbf{K}} + \sigma_{\pi})/2$$

Which RICH?

• Liquid Radiator (Freon)

May cover up to 5 GeV/cRelatively inexpensive (proximity focusing RICH)

•Aerogel + Gas Radiators

- May cover up to 10 GeV/cVery expensive
- (cost Aerogel RICH ~ 5x Proximity Focusing RICH)

UV light

- Hall-A approach
- Multiwire chambers (with CSI) suitable as cheap photon detector of large area
- C₆F₁₄ has not enough discrimination power at large momenta
- C₅F₁₂ is technologically challenging:

liquid only below 29°

needs 0° to keep same vapor pression of C₆F₁₄

M. Contalbrigo

Idea: why not visible light ?

- Much reduced cromatic error
- Longer absorption length -> higher number of p.e.
- Higher cost due to photomultiplers

Refraction index: freon

Simulation based on most conservative n (Moyssdes)

Refraction index: quartz

Quartz absorption length and refraction index from Khashan and Nassif, Optic communications 188 (2001) 129

p.e. quantum efficiency

Typical spectrum for a generic PM

Just an example.....

UV vs visible regime

Accounting in addition for 0.65 efficace detection efficiency

UV vs visible regime

No improvement at a variance with expectations:

- Reduced chromatic error (uniform refr. Index)
- Increased photon number (larger abs. length)

UV vs visible regime

PAD size 1 cm

No difference in the Cerenkov angle resolution

M. Contalbrigo

M. Contalbrigo

JLAB12 coll. Meeting 20Oct09

Particle impact point z fixed at -5 cm (before freon)

move z to 0 cm (freon surface)

Vs. emission point

UV vs visible regime

PAD size 1 cm

Cerenkov angle resolution now scales as expected

Geometry needs refinement: 1

• Two radiators (only 1 simulated); one per sector

- Detector covers up to 2 sectors (detect photons from both radiators)
- Radiator Polar acceptance: $5^{\circ} \div 30^{\circ} \Rightarrow$ fix radiator size ~ 4 m²
- Max gap length = 120 cm

Geometry needs refinement: 2

Average π**k separation** [4.5-5 GeV]

Photon spatial distribution

Average πk separation

Small "pad" size is needed only in the restricted area spanned by photon from large momentum particles

Conclusions and Outlook

Previous pessimistic estimations affected by a wrong impact z coordinate

Study the C6F14 and visible light options just started

- A hybrid (visible + UV photons) solution under test
- To be compared with C5F12 and UV light at same conditions
- Estimate the optimal geometrical parameters
 - freon thickness
 - gap length
 - detector/pad size
- Toward real experimental conditions
 - $-\pi$, p, k with their specific spectra
 - Real particle multiplicity
- Limit the total cost
 - define degrees of freedom and limiting conditions

Radiation thickness

	Thickness (cm)	X ₀ (%)
Entrance window		
Al	0.05	0.5
Rohacell51	5	2
Al	0.05	0.5
Radiator		
Neoceram	0.4	3
$C_{5}F_{12}$	2	10
Quartz	0.5	4
Gap		
CH ₄	80	0.001
Photon Detector		
Pad NEMAG10	0.08	0.4
GEM chamber	1	0.6

Total radiation thickness of the proposed RICH: $\sim 20\% X_0$

Costs - Very Preliminary!!

Class12/Hall A

Radiator: Detector:

36-48 (min.-max. volume), 24 (surface) 13 (surface), 4 (chs)

	Hall A RICH	Factor	Class12 RICH
Readout	95	4	380 (15%)
MWPC: Pads Planes	20	10	200 (8%)
MWPC: Parts (Macor Insulator)	15	10	150 (6%)
Freon (C6F14)	20	40	800 (33%)
Quartz+Neoceram	30	20	600 (24%)
Mechanical Structure	30	10	300 (12%)
Evaporation Fac.	500	1	500 (exist)
Freon Recirculation System	20 (?)	1.5	30 (?)
Total	210+520		2420+530

k\$

(estimation from Lire, CHF, \$ and Euro)

GEM ~ 1.2 x MWPC

K-π Separation_old

Angle reconstruction error vs: • Radiator Thickness = 3 cm

- 10K generated events
- Gap length = 80 cm
 - Pad/Pixel size = 0.75 cm

Approved Experiments requiring a RICH

PR-09-007 Studies of partonic distributionsusing semi-inclusive production of kaons. PR-09-008 – Studies of the Boer-Mulders Asymmetry in Kaon Electroproduction with Hydrogen and Deuterium Targets.

PR-09-009 Studies of Spin-Orbit Correlations in Kaon Electroproduction in DIS whit polarized hydrogen and deuterium targets.

Radiator Thickness / Proximity GAP

Photon Detector Size

