CLAS Collaboration

Moments of nucleon structure function F₂ <u>part III - complex nuclei</u> part II - deuteron: PRC73 part I - proton: PRD67

> M. Osipenko, October 19, JLab12 meeting, Rome 2009

> > M. Osipenko

Moments

 *Present technique of Lattice QCD can handle flavor Non-Singlet operators only (noisy disconnected diagrams cancel in such combination)
 → necessary to measure moments of both the proton and neutron. M. Osipenko

Twists

Higher Twists represent the virtual photon scattering off interacting (correlated) partons: e.g. diquarks, entire nucleon etc.

$CLAS F_2 Data$

•Continuous two-dimensional kinematics •Wide x-coverage at each fixed Q² •Very detailed large-x region • $R = \sigma_L / \sigma_T$ is known from Hall-C experiment: C. Keppel E94-110

F₂ Nuclei vs. Proton

•The measurements of the nuclear structure functions were performed in the same bins as for proton F_2 .

•Resonance peaks seem to be smaller in the deuteron and completely disappeared in carbon even at low Q². But, mostly it is the effect of the Fermi motion.

Extraction of moments

•CLAS data cover most significant region for higher moments (n>2)

 $\boldsymbol{\cdot} For$ nuclei we also measured the quasi-elastic peak at each Q^2 value

•Extraction method is essentially independent of xbehavior of the structure function

 \rightarrow Reliable evaluation of the Q²-evolution of structure function moments.

Moments

Leading Twist Q²-evolution is the same for the proton, deuteron and carbon.
Higher Twist contribution in nuclei contains additional nuclear HT terms
→Proton and nuclear moments have similar Q²-behavior suggesting a small contribution of nuclear Higher Twists.

•Carbon moments are very similar to the deuteron ones.

Twist Expansion

Leading and Higher Twists were separated by fitting the data with the following expression:

$$M_n(Q^2) = LT_n(\alpha_s) + \sum_{\tau=4,6} a_n^{\tau} \left(\frac{\alpha_s(Q^2)}{\alpha_s(\mu^2)}\right)^{\gamma_n} \left(\frac{\mu^2}{Q^2}\right)$$

•Leading Twist is determined by one free parameter $LT_n(\mu^2)$ •Higher Twist contribution is described by four free parameters $a_n^4, \gamma_n^4, a_n^6, \gamma_n^6$

HTs in Nuclei

Ratio of Higher Twists in carbon and deuteron, taken at fixed Q², demonstrates linear rise with n;
At small n<8 the Higher Twist contribution in carbon is smaller than in the deuteron;

•For n=2 the Higher Twist contribution in carbon is compatible with zero;

The suppression of Higher Twists in complex nuclei can be related to a partial quark deconfinement;
For higher moments n>=8 the contribution of Short Range Correlations, found in the region x>1, becomes important. This contribution, not related to internal nucleon structure, may be responsible for the rise of nuclear Higher Twists with n.

M. C

Summary

•Carbon structure functions F_2 were measured in continuous two-dimensional kinematical range of x and Q^2 ;

•These data combined with all previous measurements were used to obtain experimental moments of the structure function F_2 ;

•Extracted moments were analyzed in terms of Operator Product Expansion;

•The ratio of Leading Twists of carbon to deuteron reveals EMC effect compatible with that in the x-space.

•The ratio of Higher Twist contributions in carbon and deuteron is found to be suppressed for low n and increasing rapidly with n.

The draft of the paper is in AdHoc review of CLAS Collaboration.
WG review (Nuclear): Michael Dugger (chair), Tony Forest, Rakhsha Nasseripour Started - September 27, 2007,
Approved - February 12, 2009, →1 year and 4 months
AdHoc review: Tony Forest (chair), Stepan Stepanian, Chaden Djalali
Started - April 10, 2009
Today - October 19, 2009 → 7 months

M. Osipenko