Analisi BA/RM/ISS

- Hypernuclear Spectroscopy
 - Franco Garibaldi, Francesco Cusanno, Guido Urciuoli, Stefano Marrone, Mauro Iodice, Evaristo Cisbani
- Pb Quasielastic
 - Guido Urciuoli
- Transversity (RICH, k-analysis)
 - Youcai Wang, Evaristo Cisbani, Guido Urciuoli, Francesco Cusanno, Mauro Iodice, Francesco Mammoliti

- Hypernuclear Spectroscopy (12C, 16O, 9Be)
 - Presa dati 2005 e anni precedenti
 - Già pubblicato articolo su 12C
 - Risottomesso articolo su 160
 - In fase completamento analisi 9Be

Systematic Study of hypernuclei by electromagnetic probes

- Λ is a **probe** in the nucleus
- Λ can be in the s-shell (no Pauli blocking)
- Λ weakly coupled to nuclear core → shell model works well
- Exotic topics: [Hyper/Neutron Stars]

 $\Lambda-N$ described by: $V_{\Lambda N} = V + \Delta + s_{\Lambda} + s_{N} + T$ (sensitive to spin terms)

Lepton Probe $e + p \rightarrow e' + K^+ + \Lambda$ ^A(Z-1)_{Λ} Nuclei Strong Spin Flip Transition Better energy resolution Low Rates on high background Hadron Probe $\pi + n \rightarrow K + \Lambda, K + n \rightarrow \pi + \Lambda$ $^{A}(Z)_{\Lambda}$ Nuclei

Different Energy Levels Moderate/High Rates

- イロト (四) (三) (三) (三) (の)()

Results on ¹⁶O target – Hypernuclear Spectrum of ¹⁶N_{Λ}

- > Fit to the data (red line): Fit 4 regions with 4 Voigt functions $\Rightarrow \chi^2_{/ndf} = 1.19$
- Theoretical model (blu line) based on :
 - i) SLA $p(e,e'K+)\Lambda$ (elementary process)
 - ii) AN interaction fixed parameters from KEK and BNL ${}^{16}{}_{\Lambda}$ O spectra (J. Millener)

Paper resubmitted to PRL

Adapted from: F. Cusanno, Hyp-X Conference, Tokai, Ibaraki, Japan, 15th of September, 2009

JLAB Hall A E-94107: Preliminary Results on ⁹Be target

Analysis of the ⁹Be(e,e'K)⁹Li_A Complex structure, different fits can be compared with the theoretical curve

These data and, especially, the ratio of HN to the elementary cross section will give:

- new valuable information on hypernuclear structure (including spin assignment of produced hypernuclear states), and reaction mechanisms
- the modification of the dynamics of the (e,e'K⁺) process in the nuclear medium.

Parasitic test for E-08-012 Study of Light Hypernuclei by Pionic Decay at JLab

Pb-Quasielastic

- "Classico" esperimento di fisica nucleare
- Presa dati 2007
- Seguenti trasparenze da Guido Urciuoli

Impulse Approximation limitations to the (e,e'p) reaction on ²⁰⁸Pb and ¹²C

Jefferson Lab, Newport News, VA and the Hall A Collaboration

E06-007 Spokepersons: K. Aniol, A. Saha, J.M. Udías, G. Urciuoli Students: Juan Carlos Cornejo, Joaquin Lopez Herraiz Research Associate: Alexandre Camsonne

Experiment (E06-007)

- We measured ²⁰⁸Pb(e,e'p)²⁰⁷TI cross sections at true quasielastic kinematics (x_B=1, q=1 GeV/c, ω=0.433 GeV/c) and at both sides of q
- This has never been done before for A>16 nucleus

- Determine momentum distributions: 0<p_{miss}<500 MeV/c
- Determine A_{TL} by measuring cross sections on either side of q
- Determine the spectroscopic factors dependence with Q²

Studio correlazione longrange e dinamica relativistica nel mezzo nucleare

Goals of the PbQE experiment

- Strength ad alto momento mancante ⇒ long range correlation (and relativistic effects)
- ATL sensible to relativistic effects
- Spectroscopic factor below Mean Field prediction can be explained by long range correlation

L'esperimento cerca di disaccoppiare gli effetti relativistici da quelli a lungo range

Cross Section Asymmetry A_{TL}

The cross section asymmetry is defined about q

$$A_{TL} = \frac{\sigma(\phi = 0) - \sigma(\phi = 180)}{\sigma(\phi = 0) + \sigma(\phi = 180)}.$$

The data taken at NIKHEF [6] were backward of \boldsymbol{q} where both theoretical (relativistic and nonrelativistic) are relatively closer. But forward of \boldsymbol{q} the theories can disagree by two orders of magnitude

Looking for unmistakable signatures of correlations at high p_{miss} from (e,e'p) cross sections alone is a hard task for $x_B <<1$

Experimental challenges:

Target:

- Diamond/lead/diamond sandwich cryogenic target 0.2mm thick lead + 0.3mm diamond for high beam currents.

Resolution:

- In order to extract individual states we need good energy resolution.
- × Need stable good resolution beam:
 - Keep beam vertical distribution < 100 um
- » Unprecedented large vertical raster swing of 6mm
- GEANT simulations predict best possible
 resolution for perfect spectrometers to be
 1 MeV FWHM. Must use a peak fitting
 procedure to extract individual states.

Preliminary Results Pb-QE

Spectroscopic Factor ΣS_{α} / (2J+1)

²⁰⁸Pb(e,e'p) A_{TL}

Conclusions

☑ Most of the data analysis of E06-007 experiment has already been done and preliminary results have been obtained.

☑ These preliminary results are in good agreement with previous experiments.

☑ The agreement between these results and Monte Carlo simulations based on RDWIA response functions is also good.

 \square These results shows that there is no significant dependence of spectroscopic factors with Q².

 \square Furthermore, the agreement between data and theory at high pmiss seems to indicate that there is no need for long-range correlations.

 \square These results will be checked in more detail in the following months. Specially the radiative corrections and different theoretical models will be studied.

Transversity

 Effective data taking from mid Nov/08 to Feb/09

Semi Inclusive Deep Inelastic Processes / Factorization and Universality

Nucleon/Hadron description at lowest twist

SIDIS cross section linear combination of convolutions of DF's and FF's, modulated by sin/cos of azimuthal angles

Double-Blind Analysis

Witness channel target single-spin asymmetries.	$(e,p)_{HRS}$ and $(e,\pi^+)_{HRS}$	
	(e,π⁻) _{HRS}	
	(e,e') _{HRS}	
	(e,e') _{BigBite}	
Accidental (e,e'π) off cTOF peak.	(e,e') _{BigBite} ⊗ (e,π) _{HRS}	5
Unpolarized targets: ¹² C, N ₂ , H ₂ , ³ He.	o ^{targe} coin. (e,e'π)	rt 55,
Polarized ³ He target coin. (e,e'π).	Blinded box, no deliberate access.	^{Zer} o targe
	real target spin flag	fake target spin flag-1, 2, 3

15

Proximity RICH / Preliminary Performance

Mean number of PhotoElectrons for π : N_{PE} ~ 9

Error in angle reconstruction: $\sigma_{9\pi}$ ~7 mr \Rightarrow $n\sigma_{\pi-K}$ ~ 4.5 σ

Principali difficoltà incontrare

- Significativo numero di eventi con "huge number of hits"
 - no camera (test HV negativo)
 - probabilmente segnale spurio in trigger
- Sulla base della misura di Efficienza Quantica subito dopo l'evaporazione ci saremmo aspettati almeno 12 fotoni
 - Trasporto Long Island→JLab ? (in box protetto)
 - Riapertura durante i test per fissare un filo rotto ? (in atmosfera controllata)
 - Qualità del radiatore (freon) ?

RICH Pad

QE after evaporation (~25%)

RICH - Stability Check

- Average pion angle pretty stable within sigma: average value consistent with n=1.2865
- Sigma stable, but show effects of freon
- Freon quality improved after xmas standby

19 Ott 2009

Roma / JLab12.III / Analisi

RICH lavori in corso

- Migliore tuning dei parametri di configurazione
- Ottimizzazione dei tagli (vs efficiency, rejection)
- Recupero delle tracce che passano nelle aree morte (tra due pad) del RICH (~5%)
- Tentativo di recupero dei run con "large hits"
- Asimmetria dei K