Lead (²⁰⁸Pb) Radius Experiment: PREX

Elastic Scattering Parity Violating Asymmetry \Rightarrow measure neutron radius in Pb

E = 1 GeV, $\vartheta = 5^{\circ}$ electrons on lead

Spokespersons

- Paul Souder
- Krishna Kumar
- Robert Michaels
- Guido Urciuoli

Hall A Collaboration Experiment

Presa dati: primavera 2010

Gran parte delle trasparenze da: G.M. Urciuoli

Electron - Nucleus Potential

$$\hat{V}(r) = V(r) + \gamma_5 A(r)$$
electromagnetic
$$V(r) = \int d^3 r' Z \rho(r') / |\vec{r} - \vec{r}'|$$

$$A(r) = \frac{G_F}{2\sqrt{2}} [(1 - 4\sin^2 \theta_W) Z \rho_F(r) - N \rho_N(r)]$$

$$A(r) = \frac{G_F}{2\sqrt{2}} [(1 - 4\sin^2 \theta_W) Z \rho_F(r) - N \rho_N(r)]$$

$$A(r) = \frac{d\sigma}{2\sqrt{2}} [(1 - 4\sin^2 \theta_W) Z \rho_F(r) - N \rho_N(r)]$$

$$A(r) = \frac{d\sigma}{d\Omega} |F_F(Q^2)|^2$$

$$A(r) = \frac{d\sigma}{d\Omega} |$$

PREX impatto su

- Misura della densità nucleonica ⇒ migliore conoscenza della energia di simmetria
- Miglioramento modelli su Neutron Stars Equation of State (e Heavy Ions)
- Atomic Parity Violation

PREX & Neutron Stars

(C.J. Horowitz, J. Piekarweicz)

Crab Pulsar

 ${\sf R}_{\sf N}$ calibrates EOS of Neutron Rich Matter

- → Crust Thickness
- ---> Explain Glitches in Pulsar Frequency ?

Combine PREX R_N with Observable Neutron Star Radii

- → Phase Transition to "Exotic" Core ?
- → Strange star ? Quark Star ?

Some Neutron Stars seem too Cold

- → Cooling by neutrino emission (URCA)
- \longrightarrow $R_n R_p > 0.2$ fm \longrightarrow URCA probable, else not

G.M. Urciuoli

Atomic Parity Violation

Corrections to the Asymmetry are Mostly Negligible

- Coulomb Distortions ~20% = the biggest correction.
- Transverse Asymmetry (to be measured)
- Strangeness
- Electric Form Factor of Neutron
- Parity Admixtures
- Dispersion Corrections
- Meson Exchange Currents
- Shape Dependence
- Isospin Corrections
- Radiative Corrections
- Excited States
- Target Impurities

Horowitz, et.al. PRC 63 025501

PREX in Hall A at JLab

High Resolution Spectrometers

Experimental Method

Flux Integration Technique: HAPPEX: 2 MHz PREX: 850 MHz

Polarized Source

- Optical pumping of solid-state photocathode
- High Polarization
- Pockels cell allows rapid helicity flip
- Careful configuration to reduce beam asymmetries.
- Slow helicity reversal to further cancel beam asymmetries

G.M. Urciuoli

Important Systematic : PITA Effect

Polarization Induced Transport Asymmetry

Intensity Feedback

Beam Asymmetries $A_{raw} = A_{det} - A_{Q} + \alpha \Delta_{E} + \Sigma \beta_{i} \Delta x_{i}$

Slopes from

•natural beam jitter (regression)
•beam modulation (dithering)

G.M. Urciuoli

G.M. Urciuoli

Integrating Detection

- Integrate in 30 msec helicity period.
- Deadtime free.
- 18 bit ADC with $< 10^{-4}$ nonlinearity.
- Backgrounds & inelastics separated (HRS).

G.M. Urciuoli

G.M. Urciuoli

Polarimetry

Upgrade of Compton Polarimeter

- **Green Laser** → Green Fabry-Perot cavity (increased sensitivity at low E)
- Integrating Method (removes some systematics of analyzing power)
- New Photon and Electron Detectors (new GSO photon calorimeter, FADC based photon integration DAQ)

Upgrade Møller polarimeter: 4 Tesla field saturated iron foil, new FADC DAQ

New Septum Magnet

Designed by Paul Brindza and Al Gavalya.

At 5° the new Optimal FOM is at 1.05 GeV (±0.05).

Higher E_{beam} helps with Compton polarimetry.

The septum magnet is being manufactured and will arrive in the Fall.

Transverse Polarization

Part I: Left/Right Asymmetry

 \rightarrow

HRS-Right

Transverse Asymmetry Systematic Error for Parity

$$A_T \approx A_T^0 P_T \sin \phi$$

Theory est. (Afanasev)
$$A_T^0 = 5 \pm 1 \ ppm$$

Transverse polarization

$$P_T = P\sin\theta \qquad \theta \le 3^{\circ}$$

$$\delta A = \delta \left(A_T^0 \xi P_T \right)$$

"Error in"

 ξ = Left-right apparatus asymmetry

Control θ w/ slow feedback on polarized source solenoids.

$$\delta A_T^0 = \pm 1 \ ppm$$
 measure in ~ 1 hr
(+ 8 hr setup)

G.M. Urciuoli

HRS-Left

 \vec{P} $\vec{\theta}$

Transverse Polarization

Part II: Up/Down Asymmetry

G.M. Urciuoli

A_T detector design

Figure of Merit M = 1/E * 1/sqrt(R) * sqrt(1 + B/S)where,

 $E = A_T$ enhancement for A_T hole events = 50.

R = Ratio of A_T hole detector to main Pb detector event rates

B/S = Ratio of bkgd under the A_T hole events to A_T signal

The optimum A_T detector dimension is \sim 7.6cm in x by 0.8cm in y. This gives Figure of Merit = 0.637 and error inflation \sim 1.186.

Noise

- Need 100 ppm per window pair
- Position noise already good enough
- New 18-bit ADCs
 - \rightarrow Will improve BCM noise.
- Careful about cable runs, PMTs, grounds.
 - \rightarrow Will improve detector noise.
- Tests with Luminosity Monitor to demonstrate capability.

Asymmetries in Lumi Monitors

after beam noise subtraction

~ 50 ppm noise per pulse
 → milestone for electronics

(need < 100 ppm)

Jan 2008 Data

PREX: Summary

- PREX is an extremely challenging experiment:
 - A_{PV} ≈ 500 ± 15 ppb.
 - 1% polarimetry.
 - Helicity correlated beam asymmetry < 100 ± 10 ppb.
 - Beam position differences $< 1 \pm 0.1$ nm.
 - Transverse beam polarization < 1%.
 - Noise < 100 ppm</p>
 - (Not melting) Lead Target
 - − Forward angle detection → Septum magnet
 - Precision measurement of Q²: ± 0.7% → ± 0.02° accuracy in spectrometer angles
- However HAPPEX & test runs have demonstrated its feasibility.
- It will run in March-May 2010 and will measure the lead neutron radius with an unprecedented accuracy (1%). This result will have an impact on many other Physics fields (neutron stars, APV, heavy ions ...).

Esperimenti di Violazione della Parità

 Misura accurata della asimmetria nei processi elastici (e DIS) di elettroni polarizzati longitudinalmente su nucleone/nucleo non polarizzato

- Accesso alle costanti di accoppiamento deboli elettroni-quark (u/d) delle correnti neutre, ovvero alla corrente debole del protone, ovvero all'angolo di mixing debole
- Pone limiti su esistenza di nuova fisica (PVDIS, QWeak, Möller)
- Ha permesso la misura del contributo dei quark s ai fattori di forma del nucleone (HAPPEX, G0)
- Permette la misura di importanti grandezze nucleari soppressi nei processi elettromagnetici ⇒ PREX

21 Set 2009 / CSN III

Violazione di Parità e l'angolo di mixing a

