E-06-010

Measurement of Single Target-SpinAsymmetry in Semi-Inclusive n[↑] (e,e'π) Reaction on a Transversely Polarized ³He Target

E. Cisbani

http://hallaweb.jlab.org/experiment/transversity/

Struttura del nucleone

(Polarized) Deep Inelastic Scattering

Variabili cinematiche Regione DIS $Q^2 = -(\nu, \vec{q})^2 \gg M^2$ $\nu \stackrel{lab}{=} E - E' \gg M$ $x = Q^2/(2M\nu)$ finito $z = E_h/\nu$ scale lepton probe strong interaction space $\hbar/|\vec{q}| \sim 10^{-2}$ fm $R_N \sim 1$ fm time $\hbar/\nu \sim 10^{-25}$ s $R_N/c \sim 10^{-24}$ s

Factorization Theorem

 $\sigma(IN \to IhX) \sim \sum_{q} e_q^2 \cdot DF_q(x) \otimes \sigma_{Iq} \otimes FF_{q \to h}(z)$

 DF_q : quark distribution function

 $FF_{q \rightarrow h}$: quark fragmentation function (solo per h rivelato)

- Natura universale: intervengono anche in altri processi
- Osservabili: debbono essere invarianti di gauge

Semi Inclusive Deep Inelastic Processes / Factorization and Universality

Nucleon/Hadron description at lowest twist

SIDIS cross section linear combination of convolutions of DF's and FF's, modulated by sin/cos of azimuthal angles

Method: from SIDIS to SSA to DF⊗FF

$$A_{\scriptscriptstyle UT} \equiv \frac{1}{|S_{\scriptscriptstyle T}|} \frac{d\sigma(\phi,\phi_{\scriptscriptstyle S}) - d\sigma(\phi,\phi_{\scriptscriptstyle S}+\pi)}{d\sigma(\phi,\phi_{\scriptscriptstyle S}) + d\sigma(\phi,\phi_{\scriptscriptstyle S}+\pi)} = \frac{1}{|S_{\scriptscriptstyle T}|} \frac{d\sigma_{\scriptscriptstyle UT}}{d\sigma_{\scriptscriptstyle UU}}$$

 $d\sigma_{UT} = |S_T| ([\delta q \otimes H_1^{\perp}] \sin(\phi + \phi_S) \text{ Collins}$ $+ [f_{1T}^{\perp} \otimes D_1] \sin(\phi - \phi_S) \text{ Sivers}$ $+ [h_{1T}^{\perp} \otimes H_1^{\perp}] \sin(3\phi - \phi_S) + O(1/Q))$ $d\sigma_{UU} = [q \otimes D_1] + [h_1^{\perp} \otimes H_1^{\perp}] \cos 2\phi + O(1/Q)$ $\text{ where: } [d \otimes F] \equiv A_{d,F} \sum_q \int d^2 p_T d^2 k_T W_{d,F} dF$

19 Ottobre 2009

Collins Moments on proton/deuteron

Sivers Moments on proton/deuteron

Extraction of DF and FF from a Global Fit

Transversity on neutron: Hall A Experimental Setup

Beam

6 GeV, 15 μ A e^- (target limit)

Neutron Target

High pressure polarized ³He, 50 mg/cm²,

65% polariz./20 min, Lumi $\sim 10^{36}$ /s/cm²

Electron Detection: BigBite

 $E' = 0.8 \div 1.9$ GeV, $\theta = 30^{o}$, $\Delta \Omega \sim 64$ msr

Hadron Detection: HRS Left $P_h = 2.4 \text{ GeV/c}, \ \theta = -16^o, \ \Delta\Omega \sim 6 \text{ msr}$ $\pi/K \text{ ID}$

19 Ottobre 2009

JLab12 - 3° / Roma / Transversity

Polarized 3He Target

 Optically pumped Rb-K vapor polarizes ³He nuclei by spin-exchange

- Polarization ~ 45% (with beam) (along 3 directions)
- < 4% relative polarization uncertainty (NMR and EPR polarimeter)

One more set of holding coil added for vertical polarization Near future: improve density for the 12 GeV era (metallic cell and two cell-target exchange tubes)

Performace of ³He Target

- High luminosity: $L(n) = 10^{36} \text{ cm}^{-2} \text{ s}^{-1}$
- Record high 65% polarization (preliminary) with automatic spin flip / 20min

BigBite Spectrometer

- Single dipole magnet.
- Detect scattered electrons
- 30° to the beam right
- Acceptance: $\Delta \Omega \simeq 64 \text{ msr}$
- Momentum range: p = 0.8 GeV/c 2.0 GeV/c
- 3 Wire chambers for precise momentum reconstruction
- Scintillator plane for timing
- Preshower and Shower (lead-glass) for PID

(日) (四) (王) (王) (王)

From Kalyan Allada

19 Ottobre 2009

SQC

7/19

BigBite Analysis - Multi-Wire Drift Chambers

- Momentum reconstruction
- 1.5 inch Pb sieve-plate in front of the BigBite spectrometer
- Good reconstruction of the sieve pattern
- Vertex resolution: 1cm
- Wire chamber spacial resolution: 180 $\mu {\rm m}$
- Momentum resolution $\frac{\delta p}{p} \simeq 1\%$.

BigBite Scintillator Plane - Timing

- Provides timing information, used in the coincidence TOF measurement.
- Coincidence TOF provides another handle on PID in hadron arm.
- Consists of 13 bars with two PMTs on each side.
- Good timing resolution $\sigma = 230 \text{ ps}$

From Kalyan Allada

Pre-shower and Shower Detector - Particle Identification

- Pions are major source of contamination.
- Well separated pions and electrons.

Apparato HRS-L

HallA RICH

UV photon hits the CsI film and extracts one or more electrons
 the induced charge of the MWPC is collected by the F/E electronics

Upgraded Proximity Focusing RICH @ JLab

RICH originale utilizzato per Hypernuclei e Pentaquark

✓ 60% larger photon detection area (more photons collected)
 ✓ 75% longer proximity gap (smaller geometric error)

19 Ottobre 2009

Spazio delle fasi angolare

 $\phi_{Collins} = \phi_h + \phi_S$ and $\phi_{Sivers} = \phi_h - \phi_S$

Black: $\phi_S^I = 0$, Red: $\phi_S^I = 90$, Blue: $\phi_S^I = 180$, Purple: $\phi_S^I = 270$

π SIDIS Phase space 6GeV JLab HallA

 $\langle Q^2 \rangle = 2.2 \text{ GeV}^2$, $\langle z \rangle = 0.5$, x = 0.1 - 0.4, $P_{\perp} < 0.5 \text{ GeV}$ 19 Ottobre 2009 JLab12 - 3° / Roma / Transversity

HERMES on p / COMPASS on d / JLab on neutron (proj. errors)

1 month data taking: statistical errors comparable to HERMES(3 years)/COMPASS(2 years)

P

- Ib-

- 4 ⊒ ►

- IR

-

< □

200

콭

 E. Cisbani (INFN & ISS Rome)
 Transversity & TMD @ JLab
 Bad Honnef - 24/June/08
 17 / 25

 19 Ottobre 2009
 JLab12 - 3° / Roma / Transversity
 23

PR-09-018: SSA with SBS

Measurement of the Semi-Inclusive π and K electro-production in DIS regime from transversely polarized ³He target with the SBS & BB spectrometers in Hall A

G. Cates, E. Cisbani, G.B. Franklin, B. Wojtsekhowski and the SBS Collaboration http://hallaweb.jlab.org/12GeV/SuperBigBite

Propose to measure the SSA of SIDIS processes $n^{\uparrow}(e,e'\pi^{\pm})X$ and $n^{\uparrow}(e,e'K^{\pm})X$

- Extract Sivers and Collins (and Pretzelosity) asymmetries on π and K with high statistics
- Provide 2D binning (at least) on the relevant variables: x, $P_{\!\perp}$ and z, for both hadrons
- Provide Q² dependence
- Explore for the first time the high x valence region (with overlap to HERMES, COMPASS, JLab6 data)
 - Understanding of QCD dynamics in the nucleon by the Sivers effect

- Improve knowledge of the nucleon structure in terms of parton distribution functions
- Shed more light on the origin of the nucleon spin

Experimental Setup and parameters

 $e^{3}He^{\uparrow} \rightarrow e'^{+}\pi(K)^{\pm} + X$

What is special in this experiment

- High Luminosity:
 - 10⁵ larger than in HERMES
 - High target polarization (65%)
 - Fast target polarization switch (120 seconds)
 - 4 (8) transverse polarization directions
- Use of SBS (and BB):
 - Large solid angle (50 msr), very good angular and vertex resolutions
 - Large momentum coverage (2-7 GeV/c)
 - Excellent hadron PID
- Reuse equipment from GEp(5) (approved), GEn(2) and GMn (proposals)

Hadron Arm: SBS

- Angular Resolution:
 - $\sigma_{9_h} = 0.09 + 0.59/p \text{ [mrad]}$ $\sigma_{9_v} = 0.14 + 1.34/p \text{ [mrad]}$

Magnet: 48D48 - 46 cm gap
 2 Tm field integral -100 ton
 Insert for beam pipe

- GEM chambers for tracking with 70 μm resolution
- HERMES RICH for hadron-ID
- Segmented Hadron CALO (15x15 cm² blocks)

(p = 4 GeV) (0.3 mrad) (0.4 mrad)

- Vertex Resolution: 0.53+4.49/p [mm] (0.2 cm/sinθ_{central})
- Momentum resolution $\sigma_p/p = 0.03 p+0.29 \%$ (0.4 %)
- CALO Trigger Threshold: 1.5 GeV (online), 2.0 (offline)

Hadron PID: HERMES RICH on SBS

Background Rate and Trigger Logic

Challenges in large acceptance/high luminosity

- SBS Tracker rate 60 kHz/cm²; 3xGEM support rate >10 MHz/cm²
- Track reconstruction: BB first, SBS from vertex to segmented HCALO hit
- RICH PID: high segmentation of photon detector (2000 PMT) is the optimal solution:
 - -Expected 35 extra hits/event from: soft photons \rightarrow Compton electrons in aerogel (50 ns gate width) \Rightarrow 2-5% occupancy

~20% of the HERMES RICH PMT array

Q² coverage Q² (GeV) Prop. Exp. E_{beam} = 11.0 GeV 10 8 6 SIDIS cuts Prop. Exp. E_{beam} = 8.8 GeV $Q^2 > 1 \,{\rm GeV^2}$ $W^2 > 5 \,\mathrm{GeV^2}$ 2 Current Transversity Exp. E06-010 $W' > 1.5 \,\mathrm{GeV}$ y < 0.9 0.2 0.3 0.5 0.6 0.7 0.1 0.4 0.2 < z < 0.7X

We will investigate the Q² dependence of the Sivers and Collins functions, with overlap in the region of HERMES; reveal higher twist effects. Analysis of the Q² effect will use also the results of presently running 6 GeV E06-010 Transversity experiment

19 Ottobre 2009

JLab12 - 3° / Roma / Transversity

Azimuthal Coverage

Complete coverage of the Collins, Sivers and "Pretzelosity" azimuthal angles with 4 target spin directions

(with 8 target spin directions even better uniformity)

Figure of Merit

Parameter		Unit	HERMES	CLAS12	Proposed Exp.
Target			Н	HD (×60 days)	³ Hc (×40 days)
Dilution factor	f		1	0.20	0.20
Nucleon Polarization	P	%	80	85	56
Cross Section $\sim s/Q^2$	σ	a.u.	4	1	1
Angular Acceptance	$\Delta \Omega$	sr	0.14	1	0.05
Integrated Luminosity	$\int L$	$10^{38} \mathrm{cm}^{-2}$	1.5	260	4.6×10^{5}
$FOM = f^2 P^2 \sigma \Delta \Omega \int L$			0.54	7.5	280

Two beam energy runs for Q² dependence studies:

Ebeam	Time	Integrated Lumi
GeV	days	10^{43} cm^{-2}
8.8	20	2.4
11.0	40	4.6

Expected Statistical Accuracy on π

5×5 bins (0.15<x<0.65, 0.2<z<0.7) (only one shown)

High x region, with partial overlap with HERMES 2D binning in (x,z), (x,P_{\perp}) and (z,P_{\perp}) for π and K and Q² dependence

DF from CTEQ5M FF from DSS

Expected Statistical Accuracy on K

- Superior quality of Kaon data
- Extend at higher x with partial overlap with existing data on proton, deuteron and expected results of HallA Transversity 6 GeV
- n Proposed Experiment (40 days)

n - JLab HallA 6Gev (24+24 days)

d - COMPASS (2003-2004)

DF from CTEQ5M FF from DSS Rate normalized to HERMES/p+d K production

Systematics

- Physics Effects:
 - FSI on nuclei
 - 3He: P_p~2%, |Ψ_d|²~10%, P_{resc}~10-20%
 - D: P_p~85%, |Ψ_d|²~6%, P_{resc}~5-10%
 - Higher Twist Terms of SIDIS asymmetries
- Experimental/Analysis:
 - Random background
 - Vector Meson
 - Particle ID
 - Acceptance Effects
 - Radiative Corrections

Summary

- We propose to measure the SSA in the transversely polarized SIDIS processes: n[↑](e,e'π[±])X and n[↑](e,e'K[±])X at two Q²
- Experiment will re-use part of GEp(5) equipment and the HERMES RICH
- Will be ready to take data in 2014, with no significant extra costs respect to SBS apparatus for GEp(5)

Beam Time Request	days
Production at $E_{beam} = 8.8 \text{ GeV}$	20
Production at $E_{beam} = 11.0 \text{ GeV}$	40
Calibration, Target Maintenance, Config. Changes	4
Total	64

Phase Spase of the Relevant Variables

Ebeam = 11 GeV

Azimuthal Angles Distributions

The coverage of ϕ can be extended moving forward SBS to $\vartheta_{central} \sim 10$ degree (with a decrease of SBS acceptance) and/or changing (not dramatically) the BB settings

Azimuthal angles coverage vs x

Azimuthal angles coverage does not very significantly depend on x,Q²

Number of target spin directions can be increased to have a better uniformity; 8 would be optimal in this respect.

Terms entering the measured asymmetry

Table 1: modulation terms in the "best model" of the measured asymmetry A_{UT} , in addition to the Collins and Sivers terms.

Modulation	Beam/Target Pol.	Twist	Comment
sin(3phi - phi_S)	U/T	2	Corresponding to the Pretzelosity amplitude
sin(2*phi-phi_S)	U/T	3	
sin(phi_S)	U/T	3	
sin(2phi + phi_S)	L/T	2	Small long. beam component along the photon
sin(2phi)	U/L	2	Small long. target component respect to the photon
sin(phi)	U/L	3	Small long. target component respect to the photon
cos(2phi)	U/U	2	Affect the denominator of A _{UT} , Boer-Mulders DF x Collins FF + Cahn Effect
cos(phi)	U/U	3	Affect the denominator of A _{UT} , Cahn Effect (+ Boer-Mulders)

Systematics/Physics

- Target FSI relative error: expected <7% following the analysis of Scopetta/Transversity/2008
- Higher Twists:
 - we will study the Q² dependence with high statistics;
 - terms will be included into the fit whose stability benefits again of the high statistics
 - Unpolarized analysis will also be carried on

Systematics/Exp. Apparatus

- Random
 - dilution factor expected to be small < 1% (S/N = 67/0.3)
 - Relative error well below 10%
- Vector Meson:
 - from PHYTIA prediction tuned on HERMES data below 2.5%; lower at higher x
 - can be studied at higher z
- Acceptances:
 - azimuthal angles are well covered even with partial ϕ_h coverage
 - X,z,P \perp ,Q² effects suppressed by 2D (at least) binning
- Radiative QED Effects:
 - Influence x,Q² and azimuthal angles; PHYTIA can be used to estimate the correction factor (and systematic error)
 - According to HERMES we expect a systematic error <5%
- PID:
 - RICH detector with up to 5% occupancy expect to provide 4σ separation at least