JLAB12 Collaboration Meeting Rome, October 18-19

A Forward Photon Tagging Facility for CLAS12

M.Battaglieri, R. De Vita

Istituto Nazionale di Fisica Nucleare Genova - Italy

The Hall-B photon tagger

 Gold and diamond radiator for In/Coherent Bremsstrahlung

- Energy coverage: 0.2-0.95 E₀
- Efficiency ~ 80%
- Energy Resolution ~ 10-3
- Timing Resolution ~100 ps

The existing dipole magnet is unable to deflect the 11 GeV primary beam on the existing beam-dump

The existing PHOTON TAGGER will be available for energies up to $E_{\gamma} \sim 6.1$ GeV

Options for E_{\gamma} > 6 GeV?

Why photoproduction?

Physics motivations

Meson spectroscopy

Standard PWA on H target Spectroscopy on He4 and other gas targets

Hadron spectroscopy

Heavy mass baryon resonances (Cascades) double-strangeness sets a higher mass small width helps to detect and study excited states

Compton scattering

Meson polarizabilities

J/ Ψ production close threshold and on nuclear targets

Large -t physics

.....

Photoproduction experiments at JLab-12GeV

- ***** The photon beam
 - With a 11-12 GeV electron beam only few choices:
 - 1) Bremsstrahlung
 - 2) Quasi-real electro-production

• Tagger (initial photon energy) is required to add 'production' information to decay

 Linear polarization is useful to simplify the PWA and essential to isolate the nature of the t-channel exchange

★ Essential to isolate production mechanisms (M)

* Polarization acts as a J^{PC} filter if M is known

★ Linear polarization separates natural and unnatural parity exchange

Hall-D and Hall-B will host real photon beam!

4)

Quasi-real electroproduction at very Low Q² Hall-B

$E_{scattered}$	1 - 4 GeV
θ	$0.5^{o} - 1.2^{o}$
ϕ	0° - 360°
ν	7 - 10 GeV
Q^2	$0.003 - 0.029 \text{ GeV}^2$
W	3.9 - 4.6 GeV
x_{Bj}	0.0001 - 0.002

Performance

- \star 7 < E_{γ} < 10 GeV
- ★ 5cm LH target \rightarrow L ~10³⁴ cm⁻²s⁻¹
- ★ Linear polarization ~ 65% 20% (individual)
- * Capability of forward tagging (electron detection)

Real and quasi-real photon beams at JLab-12GeV

Coherent tagged Bremsstrahlung:well established technique

+ Hall-B real Bremsstrahlung Photon Tagger

Performance

★ E_γ =0.8-5.4 GeV (20% - 95% E_{beam})

 $\star \Delta E_{\gamma}/E_{\gamma} \sim 10^{-3} \Delta t \sim 200 \text{ ps}$

* Linearly polarized photons

(coherent Bremsstrahlung)

6)

Real and quasi-real photon beams at JLab-12GeV

CLAS12 in Hall B

Existing Hall-B tagger

CLAS12 - 09

8)

A Forward Photon Tagging Facility for CLAS12

Maximum electron angle: 0.5^o The tagger has to be placed upstream to torus supports (option 2)

Two possible options for tagger location: * 1) downstream * 2) between target and torus support

This strongly limits the possible hardware options

CLAS12 - 09

9)

A Forward Photon Tagging Facility for CLAS12

Forward Tagger

Calorimeter + tracking device

Electron Energy/momentum

Photon energy (ν =E-E') Polarization $\epsilon^{-1} \sim 1 + \nu^2/2EE'$

PbWO4 crystals $R_{M} \sim 2.2 \text{ cm}$ $\rho \sim 8.3 \text{ g/cm}^{3}$ $X_{0} \sim 0.9 \text{ cm}$ Low light yield (~1% Nal(Tl))

<image>

Electron angles

 $Q^2 = 4 E E' \sin^2 \vartheta/2$ φ polarization plane Veto for photons

GEM

Micromegas SCI-FI hodoscope

Need to estimate resolutions

10)

A Forward Photon Tagging Facility for CLAS12

CLAS Inner Calorimeter

424 PbWO4 crystals L = 16 cm = 17 X₀ Front size 1.3x1.3 cm² Back size 1.6x1.6 cm² Controlled Temperature (0.1 °C) APD readout

11)

A Forward Photon Tagging Facility for CLAS12

Forward Tagger within CLAS12

12)

A Forward Photon Tagging Facility for CLAS12

Rates in the forward tagger

Inelastic electro-production Elastic radiative tail Moeller scattering

Signal

Background

Rates in the forward tagger

15)

CLAS12

Proton kinematic

e' in the forward tagger Elastic proton outside CLAS (N_h=0 or 1) Electron rate in the forward tagger is high (~1 MHz)

16)

A Forward Photon Tagging Facility for CLAS12

17)

A Forward Photon Tagging Facility for CLAS12

Work plan Software activities

- Implement digitalization in GEMC
- ***** implement the cluster recognition algorithms
- ***** Realistic rate evaluation
- ***** IC-DVCS used in 6 GeV runs data as benchmark
- ★ Event generator for CLAS12 kinematic (benchmark reactions)
- **CLAS12 Fast-MC reconstruction to derive** ΔE and $\Delta \vartheta$ specifications

★ Geometry optimization
 ★ Active material optimization

Hardware activities

Crystal scintillation properties 🜟 light yield **PbWO** ★ light transmission LSO/LYSO 🜟 timing PbF2 * temperature dependence ***** Magnetic field effects ★ Light read-out APD ***** FE electronics SiPM (single) ***** readout electronics SiPM (matrix) 🜟 cooling * Mechanical design

Time schedule

★ GEMC simulations	2009/10
★ EVGen and fastmc (D	.Glazier) 2009/10
★ Final project	2010/11
★ Test facility in Genova (daq, black-box) 20 ★ Single crystal tests	
★ PbW powder+ SciFi	2010
	2011
	2011
☆ Test at BTF (LNF)	2011

Conclusions

Photoproduction experiments at CLAS12

Started project and test phase

* a forward tagger for CLAS12 is feasible
 * meson spectroscopy is a strong physic case
 * many other physics topics addressable

Workplan for 2010 and 2011 defined

define the project
 test components

Letter of Intents (LOI) at PAC35 (Jan 2010)

Instrumentation: forward tagger for real quasi-real photon experiments
 Meson spectroscopy (H2 and He4 targets)
 Other LOI's with different physics topics