maray Space Telescope

Pipelines for Gravitational Waves followup

Nicola Omodei

www.nasa.gov/fermi

Add automatic followup with LTF - easy to do

- Send an e-mail to LTF to start the analysis.

- Add a "pgwave" branch quick and dirty (Sara C., Gino)
 - Produce a LAT count map from the LIGO probability map on 10 ks (TBD).
 - Detect sources with pgwave (fast)
 - Some plots will be added to the results
 - Followup analysis with LTF (see above)
- Calculate probability maps:
 - from TS to something meaningful!

Probability maps

Dermi

Gamma-ray Space Telescope

• Work started by Lorenzo, Rupal and Milos

- From the TS map, we could create probability maps depending on the number of pixel we search (effect trial factors)
 - Calibrating the p-value distribution
- "The more you look, the less you find" effect!
 - Using the LIGO probability map as prior, we can set up a searching strategy to decrease the number of trials, limiting the region only to hot spots.

- Fix the threshold probability (5 sigma): estimate the flux such that we detect a source 50% of the time, for a given Ts_eff=30 (see Lorenzo's talk)
- This is the flux upper limit (as opposed to upper bound) which is an estimation of the sensitivity to transient sources (as opposed to the estimation of the flux of a source compatible with the observation).

Nicola Omodei – Stanford/KIPAC

- The Pipeline at SLAC is automatically triggered by e-mail
- Hard at SLAC machines to use mysql and web servers:
 - Move results file at Stanford, store them in a database
 - Using the same infrastructure than <u>http://fermigrb.stanford.edu</u> (supeople, leland)

- Localization might not be an issue for some joint LIGO/Virgo events ~ 30% of the cases
 - No need to scan large region of the sky: followup strategy similar to standard GRB
 - Lat Transient Factory and BATool triggered on GW GCN.
 - Still for the majority of cases these infrastructures will be needed

- Localization might not be an issue for some joint LIGO/Virgo events $\sim 30\%$ of the cases
 - No need to scan large region of the sky: followup strategy similar to standard GRB
 - Lat Transient Factory and BATool triggered on GW GCN.
 - Still for the majority of cases these infrastructures will be needed
- Long time monitoring
 - Given the surprisingly long X-ray afterglow of GW171017, and the fact that we don't really know much about the source, we should keep monitoring all the sources detected in GW

- Results exported to ASDC
 - Using ASDC facility for:
 - Cross correlation with catalogs (2Mass Redshift Survey 2MRS: <u>http://tdc-www.harvard.edu/2mrs/</u> or others)
 - Note: the LIGO maps contain information also on the distance (3D), therefore small group of local galaxies can be selected knowing the location and the distance (independently from the LAT results).

Playing with Bayesian priors

Gamma-ray Space Telescope

Galaxies in the GLADE catalog (<u>http://aquarius.elte.hu/glade/</u>) within the 90% credible volume (simulated source). From Del Pozzo et al., 2018 (https://arxiv.org/abs/1801.08009)

Similar techniques (2MRS catalog?) have been crucial in determining which galaxies to point for 170817.