Performance of a high-throughput tracking processor implemented on Stratix-V FPGA

Università di Pisa & INFN Sezione di Pisa Federico Lazzari

WHY - Tracking at very high rate

- In hadronic colliders at high luminosity (> 10^{34} cm⁻²s⁻¹) a heavy flavor particle will be produced at every beam crossing
- It is not possible to trigger events efficiently using simple parameters
- It is necessary to reconstruct high quality tracks at beam crossing rate (30 MHz @ LHC)

TRACKER CONFIGURATION^[3]

HOW - The "Artificial Retina" Architecture^[1]

- Mathematically related to "Hough transform"^[2]
- Map tracks parameters space into an matrix of cells
 - Data flow from Detector
 - Custom **Switch** delivers hits only to appropriate cells

For each cell, the corresponding Engine performs a weighted sum of hits near the track trajectory

Parameters are obtained interpolating responses of nearby cells

Engines work in a fully parallel way

- Typical number of track @ LHCb SciFi: 200^[4]
- Number of cells in the parameters space: 80k
- → Occupancy (track/cell): 0.25%

- Track are forwarded to DAQ system

FUNCTIONAL PROTOTYPE

5 Altera Stratix III FPGA

• Maximum clock 350 MHz

Two boards connected

• Demonstrate system

LVDS

with LVDS lines

functionality

Switch

board

• 200K LE per FPGA

HIGH-SPEED PROTOTYPE

- 2 Altera Stratix V FPGA
 - 952K LE per FPGA
 - Maximum clock 650 MHz
 - 48 external 12.5 Gbps serial lines per FPGA

FPGAs connected with LVDS lines

• Test performances improvement after porting to newer FPGAs

> Switch LVDS FPGA FPGA

Single FPGA design

• Measure the maximum reachable event rate

FPGAs connected with optical fibers

• Demonstrate the possibility of multi-board implementation

RESULTS

• High event rate

> 30 MHz with occupancy < $0.5\%^{[5]}$

Engine

board

Latency measurement High-Speed Prototype (optical fibers)

Engine

- Very low latency, < 500 ns
- Multi-board implementation with optical fibers has the same event rate as single-device configuration
- This tracking processor has been included in the recent LHCb Expression of Interest for future upgrades presented to LHCC^[6]

· · ·	Switch	Interconne	ction Engi	ne
· · · · · · · · · · · · · · · · · · ·	•			.
80 ns	· ·			
	•			
Nanagang Kanadapatén (sabat sangang)	بمذاوي ماويتك ومراد	apartation align Parasta methylogia.	والانتيارية أومارهم وجود بركامه	
al an Franker of American State (and the state of a Annual American State (and the state of a state of a state Annual American State (a state of a state of	i de per por destruction (* Alfrectionen et alfrection (* Alfrectionen et alfrection (*	harde the set of a factories in a set of Page of a set of	**************************************	
		403 ns		-

PROJECT DETAILS

Results achieved by "Retina", a 3-year project funded by INFN,	[1] A. Abba, F. Bedeschi, M. Tech. Rep. LHCb-PUB-202
Division of technological research experiments	[2] P. Hough, Machine analy
R. Cenci ^{1,2} , F. Lazzari ^{1,2} , P. Marino ^{2,3} , M.J. Morello ^{2,3} , G. Punzi ^{1,2} , L.F. Ristori ⁴ ,	[3] R. Cenci, F. Bedeschi, P. I <i>EPJ Web Conf.</i> 127 (2016
E Chinalla? C Ctracka? L Malah?	[4] LHCb Collaboration, LHC
F. Spinella-, S. Stracka-, J. Walsh-	[5] R. Cenci, F. Lazzari, P. Ma
¹ Università di Pisa ² INEN Pisa ³ Scuola Normale Superiore di Pisa ⁴ ENAI	[6] LHCh collaboration Exp

REFERENCES

[1] A. Abba, F. Bedeschi, M. Citterio, F. Caponio, A. Cusimano, A. Geraci et al., A specialized track processor for the LHCb upgrade, Tech. Box. LHCb. BUB 2014 026. CEBN, Coneve, Mar. 2014
Iech. Rep. LHCD-POB-2014-020, CERN, Geneva, Mai, 2014
[2] P. Hough, Machine analysis of Bubble Chamber Pictures, Proc. Inc. Com. High Energy Accelerators and instrumentation C390914 , 1939
[3] R. Cenci, F. Bedeschi, P. Marino, M. Morello, D. Ninci, A. Piucci et al., First Results of an "Artificial Retina" Processor Prototype, EPJ Web Conf. 127 (2016) 00005
[4] LHCb Collaboration, LHCb Tracker Upgrade Technical Design Report, CERN-LHCC-2014-001; LHCB-TDR-015
[5] R. Cenci, F. Lazzari, P. Marino, M.J. Morello, G. Punzi, L.F. Ristori, F. Spinella, S. Stracka, J. Walsh, Development of a High-Throughput Tracking Processor on FPGA Boards, PoS(TWEPP-17) 136
[6] LHCb collaboration, Expression of Interest for a Phase-II LHCb Upgrade: Opportunities in flavour physics, and beyond, in the HL-LHC era, Tech. Rep. CERN-LHCC-2017-003, CERN, Geneva, Feb, 2017

14th Pisa Meeting on Advanced Detectors, La Biodola (Italy), May 27 - June 02, 2018