Front-End Electronics of the Electromagnetic Barrel-Calorimeter for the PANDA Target Spectrometer

K.T. Brinkmann, M.Moritz, <u>C.Hahn</u>, R. Schubert, U. Thöring, M. Straube, M. Peter, **B.** Wohlfahrt and H.-G. Zaunick for the PANDA-Collaboration

2nd Physics Institute, Justus-Liebig-University Giessen, Germany

The PANDA electromagnetic calorimeter (EMC) and the recent prototypes

Barrel EMC:

- 15552 PbWO₄ crystals (length: 20 cm \sim 22 X₀)
- 13 crystal types (different degree of tapering)
- Type 1: most tapered, type 13: least tapered
- Operation temperature: -25 °C

The EMC Front-End Electronics

Schematics of the EMC readout chain

- Raw data output of the EMC would be ~275 Gb per second \rightarrow mainly background and noise
- Intelligent, triggerless and dead-time free readout is being developed
 - \rightarrow preprocessing on the fly
- Signal of LAAPDs would be too low for further processing
 - \rightarrow amplification and signal shaping by customized APFEL ASIC (low-noise and low-power charge preamplifier)
- Signal of preamplifiers is digitized by Sampling Analog-to-Digital converters (SADCs) sampling continuously at 80 MHz and featuring a 14-bit resolution

Front-End Electronics: Inside EMC Volume Time Distribution

Prototypes:

Small sections of one barrel slice

- Voltage controlled by adjustment of a N-MOSFET
- Seperately configurable channels (for each LAAPD)
- Precision of adjustment up to exactly 0.1 V
- Voltage and current can be measured
- SPI /I2C Interface
- Voltage adjustment electronics inside detector volume but outside of cooled volume
- Recent prototyping showed proof-of-concept by high-precision measurements of APD characteristics

1

 \boldsymbol{n}

6

5

an

0

0

()

1

0

0

5

- Programmable amplification of 16/32

Offline Computing and

