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The number of photon hits is a function 
of the threshold:

*Noise = extra counts due to pulse height variations 
overcoming the comparator threshold

Nγ ( Ethr )=
N 0
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(1+C s ( Eγ−E thr ) ) (1+Erf (

Eγ−E thr

√2Noise ))
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All data are taken with a preliminary readout system !

The new Mythen III chip
What is MYTHEN?
- silicon microstrip detector with 50 µm pitch, 8 mm long strips
- single photon counting 
- for time-resolved powder diffraction, medical imaging, etc

What is new?
- three comparators and three 24-bit-counters for:

- energy-windowing
- count rate improvement (track pile-up)
- pump-probing with multiple time slots, 
  counters are independently gateable

- reduced threshold dispersion
- improved noise performance
- small dead time → increased count rate capability

Why a strip detector?
- less channels per area:
    fast frame rates
- small pitches possible:
    high resolution
- large angular coverage

Why photon counting?
- ideally noiseless
- large dynamic range
- fluorescence suppression
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*Vrf changes the feedback resistance, i.e. the gain and shaping time
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Rate capability

1.Plot the measured 
rate vs the 
reference rate I
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*given by the beamline

2.Estimate the ideal 
theoretical rate 
with a linear fit

3.Fit the ratio ε of         
the measured and     
theoretical rate Φ      
to find the dead     
time τ

d 
with:                

ε=exp(-τ
d
Φ)*

*paralyzable counter model [1]

The dead time
- increases with the   
  gain (Vrf)  
- allows for fast          
  count rates 

VrfScan_plots_channels_8keV_v4.cpp 
(MS Feb2017)
TGraphErrors 
*g=my301_CalibrationFactors(62,1)
Vrf=950: 32.83+-0.95 DAC/keV
Vrf=50: 14.49-+0.0897 DAC/keV
Vrf=1250: 43.66+-0.129 DAC/keV

VrfScan_20170716Elettra.cpp
my301_ScurvesCalib(62)

The gain 
- increases with      
  Vrf 
- starts to saturate  
  at high Vrf 

1.Take threshold 
scans at different 
photon energies

2.Extract the 
inflection points

3.Calculate the 
gain 
[DACunits/keV] 
for every 
Vrf-setting
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Conclusion
The noise 
decreases with 
increasing dead 
time:

MYTHEN II
@ 8.75 keV,

Standard settings
Fast settings

MYTHEN III.01
@ 8.0 keV, 

Vrf = 950 DACunits
Vrf = 250 DACunits

Untrimmed 
threshold 

dispersion [eV]

1623 ± 6
1761 ± 7 

476 ± 3
721 ± 4

Noise [e-]
230 ± 7
262 ± 7

175 ± 1
261 ± 3

Dead time τ
d
 

[ns]
170 ± 10
110 ± 10

111 ± 3
40 ± 3
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Module design 

8 keV

3rd proto-
type

Mythen 3.02

- 2nd prototype with 8 different architectures
→ tune the Signal-to-Noise-Ratio 
→ test different design options
- the chip is functional and under test

The threshold dispersion
- depends on the gain (Vrf)
- is less than 6% (untrimmed)
- is independent of the     
photon energy
- is reduced to 0.3% by trimming

The threshold dispersion is 
given by the spread of the 
inflection points, i.e. the 
resulting thresholds, over all 
sensor-strips.

untrimmed: 
438 eV ± 36 eV
trimmed:   
27 eV ± 2 eV
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