The MYTHEN III strip detector prototypes

What is MYTHEN?
- silicon microstrip detector with 50 µm pitch, 8 mm long strips
- single photon counting
- for time-resolved powder diffraction, medical imaging, etc

Why a strip detector?
- less channels per area:
 - fast frame rates
 - high resolution
 - small pitches possible:
 - large angular coverage

Why photon counting?
- ideally noiseless
- large dynamic range
- fluorescence suppression

What is MYTHEN?
- small dead time → increased count rate capability
- improved noise performance
- reduced threshold dispersion

What is new?
- three comparators and three 24-bit-counters for:
 - energy-windowing
 - count rate improvement (track pile-up)
 - pump-probing with multiple time slots, counters are independently gateable
 - reduced threshold dispersion
 - improved noise performance
 - small dead time → increased count rate capability

Threshold dispersion

The threshold dispersion is given by the spread of the inflection points, i.e. the resulting thresholds, over all sensor-strips.

Rate capability

1. Plot the measured rate vs the reference rate I_1.
2. Estimate the ideal theoretical rate with a linear fit.
3. Fit the ratio ε of the measured and theoretical rate Φ to find the dead time τ_d with:
$$\varepsilon = \exp(-\tau_d \Phi)$$

Rate capability

The dead time τ_d increases with the gain (Vrf) → allows for fast count rates

Conclusion

The noise decreases with increasing dead time:

<table>
<thead>
<tr>
<th>MYTHEN II @ 8.75 keV</th>
<th>MYTHEN III.01 @ 8.0 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ Vrf = 250 DACunits</td>
<td></td>
</tr>
<tr>
<td>Standard settings</td>
<td>Fast settings</td>
</tr>
<tr>
<td>Untrimmed threshold dispersion [eV]</td>
<td>1623 ± 6</td>
</tr>
<tr>
<td>Noise [e-]</td>
<td>230 ± 7</td>
</tr>
<tr>
<td>Dead time τ_d [ns]</td>
<td>1170 ± 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MYTHEN 3.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation of the detector</td>
</tr>
<tr>
<td>2020</td>
</tr>
</tbody>
</table>

- 2nd prototype with 8 different architectures
 - tune the Signal-to-Noise-Ratio
 - test different design options
- the chip is functional and under test

References