The MYTHEN II strip detector prototypes

Microstrip system for Time rEsolved experimeNts

M. Andrä¹, R. Dinapoli¹, A. Bergamaschi¹, R. Barten¹, M. Brückner¹, S. Chiriotti Alvarez¹, E. Fröjdh¹, D. Greiffenberg¹, C. Lopez-Cuenca¹, D. Mezza¹, A. Mozzanica¹, S. Redford¹, C. Ruder¹, B. Schmitt¹, X. Shi¹, D. Thattil¹, G. Tinti¹, S. Vetter¹ and J. Zhang¹ ¹-Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland marie.andrae@psi.ch

Wir schaffen Wissen - heute für morgen

The new Mythen III chip

What is MYTHEN?

- silicon microstrip detector with 50 µm pitch, 8 mm long strips
- single photon counting
- for time-resolved powder diffraction, medical imaging, etc

Threshold dispersion

22 192 6	N-/				<mark>+</mark> 8.8 keV
4926	485 eV				<mark>+</mark> 12.0 keV
20			10/		<u>+</u> 15.0 keV
479 eV 18	518 eV	4 eV	464	eV	,
	рто ел		482	eV	<u>+</u> 20.0 keV
16		53	33 eV		<u>+</u> 22.0 keV
		556 e	V		+ 25.0 keV
14					+ 30.0 keV
12				.	+ 32.0 keV
10		••••••			
8					

Why a strip detector?

- less channels per area: fast frame rates
- small pitches possible: high resolution
- large angular coverage

*Vrf changes the feedback resistance, i.e. the gain and shaping time

What is new?

- three comparators and three 24-bit-counters for:
- energy-windowing - count rate improvement (track pile-up) - pump-probing with multiple time slots, counters are independently gateable - reduced threshold dispersion

Why photon counting?

- ideally noiseless
- large dynamic range
- fluorescence suppression

The threshold dispersion is given by the spread of the inflection points, i.e. the resulting thresholds, over all sensor-strips.

The threshold dispersion

- depends on the gain (Vrf)
- is less than 6% (untrimmed)
- is independent of the photon energy
- is reduced to 0.3% by trimming

- improved noise performance
- small dead time \rightarrow increased count rate capability

Threshold scans

All data are taken with a preliminary readout system !

The number of photon hits is a function of the threshold:

*Noise = extra counts due to pulse height variations overcoming the comparator threshold

reference rate I^{*}

*given by the beamline 2. Estimate the ideal theoretical rate with a linear fit

Noise Noise

220

200

[1]

theoretical rate Φ to find the dead time τ_{d} with: $\epsilon = \exp(-\tau_d \Phi)^*$ *paralyzable counter model [1]

 111 ± 3

gain (Vrf) - allows for fast count rates

Conclusion								
The noise decreases with increasing dead time:		MYTHEN II @ 8.75 keV, Standard settings Fast settings [1]	MYTHEN III.01 @ 8.0 keV, Vrf = 950 DACunits Vrf = 250 DACunits					
	Untrimmed threshold dispersion [eV]	1623 ± 6 1761 ± 7	476 ± 3 721 ± 4					
	Noise [e-]	230 ± 7 262 ± 7	175 ± 1 261 ± 3					

 170 ± 10

Gain Calibration

	0.02 0.04 0.06 0.08 0.1 0.12 0.1		s] 110	± 10	40 ± 3					
	2017	2018	8	2019	2020					
	Submission of 1 st pro MYTHEN 3.01 type	oto- Submission of MYTHEN 3.02	5	3 rd proto- type	Installation of the detector					
	Mythen 3.02									
	 - 2nd prototype with 8 different architectures → tune the Signal-to-Noise-Ratio → test different design options 									
	- the chip is functional and under test									
1	[1] A Bergamaschi et al. The MYTHEN detector for X-ray powder diffraction experiments at the									

Dead time T

[1] A. Bergamaschi et al, The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source (2010), J. Synchrotron Rad. (2010) 17, 653-668