
HTML5 contains the powerful “canvas” object, which lets you draw 2D and 3D
graphics directly in the browser. The oscilloscope application shown in this
paper allows rendering of 16 waveforms with 1024 points each at a frame
rate of 60 Hz on most browsers with standard canvas functions. The only
exception is the drawing of waveforms in “persistency mode”, where the
traces fades after a few seconds. Instead of using libraries which render “heat
maps”, a direct image manipulation technique was chosen for simplicity and
efficiency. The createImageData method is used to obtain an array of all
image pixels. After a trace has been drawn by setting pixel values to their
maximum RGB value, a timer is started which periodically reduces the RGB
value of a pixel. Large computer screens can contain more than one million
pixels. Scanning each time all pixels reduces the update rate to below
typically 10 Hz. To overcome this limitation, a one-dimensional array is kept
which stores a reference to all non-zero pixels.
Scanning only those non-zero
pixels reduces the computing
needs by two orders of
magnitude and brings the
frame rate back to 60 Hz.

Web-based Experiment Monitoring with HTML5
Stefan Ritt, Paul Scherrer Institute, Switzerland <stefan.ritt@psi.ch>

This paper describes a set of techniques which allow the control and
monitoring of experiments in real time with modern Web technologies using
HTML5. A minimal web server based on the Mongoose Webserver is used to
connect directly to the hardware for monitoring and control. JavaScript Object
Notation (JSON) is used to exchange data between the server and the
browser, and Typed Arrays are used for high-speed waveform transfer. The
browser side uses Asynchronous JavaScript Extensions (AJAX) together with
Remote Procedure Calls (JSON-RPC) to retrieve data from the web browser.
The HTML “canvas" element is then used to render the graphics. Modern
browsers are highly optimized and execute JavaScript as fast as native
programs (such as ones programmed in Qt) a few years ago. This allows for
effective data visualization and experiment control without having to install any
program. Try it yourself with your smartphone at http://elog.psi.ch/scope

Abstract

The Mongoose Webserver [https://github.com/cesanta/mongoose] is a light-
weight web server written in C. It supports features such as SSL, authentication
and websockets. A plug-in architecture allows user code to access hardware
devices through appropriate drivers, render measurement results as HTML text
and pass it to any web browser.

A remote procedure call scheme (RPC) allows the definition of commands
linked to call-back functions inside the server which allow the control of
hardware. The example above shows a minimalistic program to read a
temperature and control a LED on a Raspberry Pi computer.

Web Server

#include <stdio.h>
#include "mongoose.h"

static struct mg_serve_http_opts s_http_server_opts;
static char *s_http_port = "8080";

static int rpc_setled(char *buf, int len, struct mg_rpc_request *req)
{

digitalWrite(0, atoi(req->params[1].ptr));
return mg_rpc_create_reply(buf, len, req, "status", 1);

}

static int rpc_readtemp(char *buf, int len, struct mg_rpc_request *req)
{

return mg_rpc_create_reply(buf, len, req, "temp", read_temperature());
}

static void ev_handler(struct mg_connection *nc, int ev, void *ev_data)
{

static const char *methods[] = { "setled", "readtemp", NULL };
static mg_rpc_handler_t handlers[] = { rpc_setled, rpc_readtemp, NULL };

struct http_message *hm = (struct http_message *) ev_data;
char buf[1000];

if (ev == MG_EV_HTTP_REQUEST) {
if (mg_vcmp(&hm->uri, "/json-rpc") == 0) {

// server JSON-RPC content
mg_rpc_dispatch(hm->body.p, hm->body.len, buf, sizeof(buf),

methods, handlers);
mg_printf(nc, "HTTP/1.0 200 OK\r\nContent-Length: %d\r\n"

"Content-Type: application/json\r\n\r\n%s",
(int) strlen(buf), buf);

nc->flags |= MG_F_SEND_AND_CLOSE;
} else {

// serve static content
mg_serve_http(nc, hm, s_http_server_opts);

}
}

}

int main(int argc, char *argv[])
{

struct mg_mgr mgr;
struct mg_connection *nc;

mg_mgr_init(&mgr, NULL);
nc = mg_bind(&mgr, s_http_port, ev_handler);
mg_set_protocol_http_websocket(nc);
s_http_server_opts.document_root = ".";
s_http_server_opts.enable_directory_listing = "yes";

while(1) {
mg_mgr_poll(&mgr, 1000);

}

return 0;
}

Data sent between the server and the browser can be encoded in different
formats, each having certain advantages and disadvantages. While simple
values can be passed as plain text, more complex data structures are best
encoded in Java Script Object Notation (JSON). A simple JSON.parse() in the
browser converts the string into a full Java Script object. For long arrays such as
waveform values, typed arrays give an about five times speed improvement
over JSON encoding. For effective JSON encoding on the server side, the
“JSON for Modern C++” library can be used https://github.com/nlohmann/json

Data Encoding

Plain text JSON Typed arrays
Example 23.5 deg. C { “Temperature”: {

“value”: 23.5,
“unit”: “deg. C” }}

0x41 0xBC 0x00 0x00

Server Side mg_printf(“%f deg. C”, 
temp);

json j = {
{ “Temperature”: {

“value”, temp,
“unit”, “deg. C” }}

};

mg_printf(j.dump());

mg_send(&temp, 4);

Browser 
Side

var t = 
parseFloat(response);

var obj = JSON.parse(response);
var t = obj.temperatue.value;

var a = Float32Array(response);
var t = a[0];

Pro Simple Simple to debug, allows 
complex objects

5x faster than JSON

Con Complext objects are 
hard to parse

Slow for long arrays Cannot be displayed directly in 
browser for debugging

Data Drawing

Many controls such as drop-down lists and check boxes exist in the HTML
standard. Typical control applications require however additional controls such
as sliders, image buttons and floating dialog boxes. A light-weight library
containing these controls has been developed for this application and can be
downloaded at https://elog.psi.ch/scope/controls.js

Custom Controls

Modern web technologies allow the development of efficient control and
monitoring applications running in web browsers with certain advantages:
• Operating system independent
• Runs on PCs, tablets and smart phones
• Remote access
• No software installation necessary
• Automatic software updates
Graphical web applications will therefore replace traditional graphical
programs in the near future. Being able to understand and to use these
technologies for own developments will therefore be of great advantage in
the field of controls and monitoring.

Conclusions

Readout of DRS4 – based WaveDREAM board

Histogramming of peak-height distributions


