A FAST TIMING MICRO-PATTERN GASEOUS DETECTOR FOR TOF-PET

Raffaella Radogna, Piet Verwilligen, Marcello Maggi

University of Bari & Italian National Institute for Nuclear Physics (INFN) - Bari, Italy

14th Pisa Meeting on Advanced Detectors (PM2018), 27 May - 2 June 2018 La Biodola, Italy

Abstract

A new generation of gaseous detectors, named Micro-Pattern Gas Detectors (MPGDs), has been developed thanks to an improved micro-structure technology. A new detector layout, named Fast Timing MPGD (FTM), has been recently proposed. The FTM would combine both the high spatial resolution (100um) and high rate capability (100MHz/cm^2) of the MPGDs with a high time resolution of 100ps. This new technology consists of a stack of several coupled layers where drift and multiplication stages alternate in the structure, yielding a significant improvement in timing properties due to competing ionization processes in the different drift regions. This contribution introduces the FTM technology as an innovative PET imaging device concept

Time-Of-Flight Positron Emission Tomography

- PET is a non-invasive technique to visualize organs with high metabolic activity
 - β + sugar (FDG) is administered to a patient and concentrates at high metabolic activity regions (tracer)
 - e+ is released and looses energy during travel (~1mm) before annihilation
 - 2_{Y} (511 keV) are emitted back to back, their coincident detection determines the Line of Response (LOR)

• Charged particles ionize the gas in the drift region producing e⁻ multiplied in the gain region

Fast Timing Micro Pattern Gaseous Detector (MPDG) for photons

- Improve time resolution by reducing distance of closest e-ion pair to the gain region resistive structure \rightarrow signal from any layer induced in external pickup strips split drift volume in N layers, each with own
- AMP

- PET scans of colon cancer. The use of TOF improves the lesion detectability (arrow). [source: doi.org/10.17226/11985]
- w/o TOF equal probability assigned to each point along the LOR
- w/TOF few 100 ps measurement will lead to ~5 cm precision along the LOR
- use of **fast timing** in PET results in **high contrast** images

Ideal TOF-PET detector	LYSO crystal	MRPC	fast MPDG
high detection efficiency for γ	\checkmark	$\approx 0.66\%$ (4 layers)	?
high spatial resolution	$\mathcal{O}(5) \text{ mm}$	$\mathcal{O}(0.5) \text{ mm}$	<i>©</i> (0.1) mm
good energy res. to reject scattered γ 's	✓ (≤10%)	×	moderate
high time resolution	400-600 ps	\leq 200 ps	<i>O</i> (200) ps
inexpensive to produce	×	\checkmark	
easy operation	\checkmark	X (HV)	\checkmark

Photon Conversion

- GEANT4.10.03 version used
- FTFP_BERT_HP physics list
- Simulation of 511 keV γ interaction in different materials and thicknesses:
- PCB (FR4), kapton, glass (G4_GLASS_LEAD), lead glass (G4_GLASS_PLATE)
- Adapt structure to detect 511 keV y from PET

amp. structure \rightarrow improved time resolution

• low operational potentials $\mathcal{O}(500 \text{ V})$

Fast Timing MPDG for photons: from Simulation to Prototypes

Photon conversion (GEANT4):

- estimate the conversion rate in resistive materials and obtain electron energy spectrum
- trade-off between many detection layers (time res.) vs large drift regions (energy res.)
- Electric field inside the detector (ANSYS, COMSOL)
- **Primary ionization** (GARFIELD++, GEANT4):
- number of primaries and first e-ion pair distance from amplification layer (time res.)
- **Energy resolution** with several small detection layers (GEANT4)
- **Drift and Avalanche** (GARFIELD++):
 - estimate gain of the detector and gain variation (energy res.)
- simulation of signal formation and shape, spatial and time res. estimation
- fast gain by integration of Townsend coefficient (COMSOL) corrected for Penning effect (MAGBOLTZ)
- **Final prototype performance estimation**

Gain Estimation

Gas gain estimated as a function of the amplification potential

COMSOL: Penningcorrected Townsend coefficient is integrated. **GARFIELD**: avalanche simulated with the Microscopic Tracking

FTM for photons proposals

Scheme B: photon can convert in each amp. layer (only resistive material allowed)

inverted order of drift and gain region \rightarrow fast signal

Simulation Validation

- AMPTEK X-ray (Ag) passing the FTM drift board simulated using GEANT4
- Cu fluorecence activated
- Final spectra in the drift region available to simulate the final signal
- Comparison with data ongoing

