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Time-Of-Flight Positron Emission Tomography

PET is a non-invasive technique to visualize organs with high 
metabolic activity 

• β+ sugar (FDG) is administered to a patient and 

concentrates at high metabolic activity regions (tracer) 
• e+ is released and looses energy during travel (~1mm) 

before annihilation 

• 2γ (511 keV) are emitted back to back, their coincident 
detection determines the Line of Response (LOR) 

• w/o TOF equal probability assigned to each point 
along the LOR 

• w/ TOF few 100 ps measurement will lead to ~5 cm 
precision along the LOR 

• use of fast timing in PET results in high contrast images

PET principle, w/ and w/o TOF.  

[source: srs.fbk.eu/projects/sublima]

PET scans of colon cancer. The use of TOF 
improves the lesion detectability (arrow).  

[source: doi.org/10.17226/11985]
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• high detection efficiency for γ 
• high spatial resolution 
• good energy res. to reject scattered γ’s 
• high time resolution 

• inexpensive to produce 

• easy operation
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FTM for photons proposals
Scheme A: photon converted in high-Z resistive material + several thin amplification layers 

• Charged particles ionize the gas in the drift 

region producing e- multiplied in the gain 

region  
• Improve time resolution by reducing distance 

of closest e-ion pair to the gain region  
• resistive structure→ signal from any layer 

induced in external pickup strips 
• split drift volume in N layers, each with own 

amp. structure→ improved time resolution 

• low operational potentials 𝒪(500 V)

• Photon conversion (GEANT4):  
• estimate the conversion rate in resistive materials and obtain electron energy spectrum 
• trade-off between many detection layers (time res.) vs large drift regions (energy res.) 

• Electric field inside the detector (ANSYS, COMSOL)  
• Primary ionization (GARFIELD++, GEANT4):  

• number of primaries and first e-ion pair distance from amplification layer (time res.) 
• Energy resolution with several small detection layers (GEANT4) 
• Drift and Avalanche (GARFIELD++): 

• estimate gain of the detector and gain variation (energy res.)  
• simulation of signal formation and shape, spatial and time res. estimation 
• fast gain by integration of Townsend coefficient (COMSOL) corrected for Penning effect 

(MAGBOLTZ)  
• Final prototype performance estimation
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• GEANT4.10.03 version used 
• FTFP_BERT_HP physics list  
• Simulation of 511 keV γ interaction in different 

materials and thicknesses:  
• PCB (FR4), kapton, glass (G4_GLASS_LEAD), 

lead glass (G4_GLASS_PLATE) 
• Adapt structure to detect 511 keV γ from PET
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[source: arXiv:1503.05330]

Ideal TOF-PET detector  

Abstract 
A new generation of gaseous detectors, named Micro-Pattern Gas Detectors (MPGDs), has been developed thanks to an improved micro-structure technology. A new detector layout, named Fast 
Timing MPGD (FTM), has been recently proposed. The FTM would combine both the high spatial resolution (100um) and high rate capability (100MHz/cm^2) of the MPGDs with a high time 

resolution of 100ps. This new technology consists of a stack of several coupled layers where drift and multiplication stages alternate in the structure, yielding a significant improvement in timing 
properties due to competing ionization processes in the different drift regions. This contribution introduces the FTM technology as an innovative PET imaging device concept

Fast Timing Micro Pattern Gaseous Detector (MPDG) for photons

LYSO crystal MRPC  fast MPDG  

Fast Timing MPDG for photons: from Simulation to Prototypes
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Photon Conversion

Gain Estimation
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• Sub-relativistic e- has high ionization density 

• inverted order of drift and gain region → fast signal
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Scheme B: photon can convert in each amp. layer (only resistive material allowed) 
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Electron production rate and energy spectra.

Electron production rate and energy spectra.

Gas gain estimated as a function of the amplification potential

COMSOL: Penning-
corrected Townsend 
coefficient is integrated. 
GARFIELD: avalanche 
simulated with the 
Microscopic Tracking 
algorithm

Simulation Validation

Energy [MeV]
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Ph
ot

on
 fr

ac
tio

n 
(%

)

5−10

4−10

3−10

2−10

1−10

1

10
Position in Detector

X-ray initial spectrum

After 1.6 mm of FR4

FR4 + 35 um of Cu

Gas

AMPTEK X-ray (Ag) spectrum in the FTM drift region

• AMPTEK X-ray (Ag) passing the FTM drift board simulated using GEANT4 
• Cu fluorecence activated 
• Final spectra in the drift region available to simulate the final signal 
• Comparison with data ongoing

PCB (FR4)KAPTON

LEAD GLASS

DRIFT BOARD

• Raffaella.Radogna@ba.infn.it 
• piet.Verwilligen@ba.infn.it 
• Marcello.Maggi@ba.infn.it
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