

Gigi Cappello¹, Oscar Adriani^{2,5}, Sebastiano Albergo^{1,6}, Mirco Andreotti³, Rita Borgheresi^{2,5}, Paolo Cardarelli³, Elisabetta Maria Grazia Consoli³, Giovanni Di Domenico³, Federico Evangelisti³, Mauro Gambaccini^{3,7}, Giacomo Graziani², Nunzio Guardone^{1,6}, Antonio Stefano Italiano¹, Michela Lenzi², Michele Marziani³, Giovanni Passaleva², Gianfranco Paternò³, Alin Titus Serban², Stefano Squerzanti³, Alessia Rita Tricomi^{1,6}, Alessandro Variola⁴, Michele Veltri²

¹Istituto Nazionale di Fisica Nucleare, INFN - Sezione di Catania, via S.Sofia,64, Catania, Italy , ²Istituto Nazionale di Fisica Nucleare, INFN - Sezione di Fisica Nucleare, INFN - Sezione di Fisica Nucleare, INFN - Sezione di Fisica Nucleare, INFN - Laboratori Nazionali di Frascati, Frascati, Italy, 5Dipartimento di Fisica e Astronomia, Università di Firenze, Firenze, Italy, 6Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy, 7Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy

ELI is a pan-European project involving over 40 institution from 13 EU countries that aims to host high-power lasers and extremely intense radiation beam lines devoted to scientific applications spacing from fundamental nuclear and molecular studies to applied biological and environmental researches.

Distributed into three specialized sites: Eli - Attoseconds (Hungary) Eli - Beamlines (Czech Republic)

Eli - Nuclear Physics, ELI-NP (Romania) [1]

The ELI-NP building in Magurele, near Bucharest, Romania

The Gamma Beam System (ELI-NP-GBS) of ELI-NP will produce an intense γ -beam from Compton inverse scattering of pulsed laser light (at 550nm) from a (up to 720MeV) electron beam [2]. The design, manufacturing, delivery, installation, testing, and maintenance of the Gamma Beam System (GBS) is provided by the **EuroGammaS** association.

Photon energy	0.2-19.5 <i>MeV</i>
Spectral Density	0.8-4 ⁻ 10 ⁴ ph/sec.eV
Bandwidth (rms)	≤ 0.5%
# photons per shot within FWHM bdw.	≤ 2.6 [.] 10 ⁵
# photons/sec within FWHM bdw.	≤ 8.3 [.] 10 ⁸
Source rms size	10 - 30 μm
Source rms divergence	25 - 200 <i>μrad</i>
Peak Brilliance (<i>N_{ph}/sec mm²mrad^{2.}0.1%</i>)	10 ²⁰ - 10 ²³
Radiation pulse length (rms, psec)	0.7 - 1.5
Linear Polarization	> 99 %
Macro rep. rate	100 <i>Hz</i>
# of pulses per macropulse	≤ 32
Pulse-to-pulse separation	16 nsec

O. Adriani et al. arXiv:1407.3669 [physics.acc-ph] (2014)

The y-Beam characterization system (EuroGammaS WPog) [3] Will give a precise energy calibration of the γ beam and a continuous

The Nuclear Resonant Scattering (NRS) principle will be used to perform an absolute energy calibration of the CSPEC and the GCAL devices, and to give a redundant energy measurement. $E = E_r$

Working principle: detect the resonant γ decays of properly detected target materials hit by a gamma beam with energy and bandwidth overlapping the selected nuclear level.

 $E_{b} = E_{r} \qquad \sigma^{0}(E) = \pi \lambda^{2} \frac{2J_{1}+1}{2(2J_{0}+1)} \frac{\Gamma^{2}}{(E-E_{r})^{2}+\frac{1}{4}\Gamma^{2}}$

	<u>6</u>	¹¹ B	12C	27AL	27AL
E _r (MeV)	3.56	2.12	4.43	2.21	2.98
σ_{int} (b*MeV)	8*10-4	5 [*] 10 ⁻⁵	1 [*] 10 ⁻⁵	2*10 ⁻⁵	4 [*] 10 ⁻⁵

Some nuclides with resonance levels between 2MeV and 3MeV suitable for low energy measurements in Eli-NP.

The NRSS detector[4] is made of a screened array of BaF₂ crystals surrounding a LYSO crystal. Two different designs have been implemented for low energy (0.2-3.5 MeV) and high energy (up to 19.5MeV) beam lines.

(b and c); d) vacuum pumps; e) target shifter; f) NRSS crystal detector; g) moving platform. The system will operate in **two modes**:

Layout of the NRSS: a) Al scattering chamber placed between two valves

Scattered γ

(main) Fast Counting mode: Use the fast BaF2 response (<1ns) to count photons in resonance region. A dual readout technique is used to drastically reduce background from Pile-up;

Crystal	$ ho(gr/cm^3)$	$\lambda(nm)$	au(ns)	$light_{output}(ph/MeV)$
BaF_2	4.88	220	0.88	12000

3D view of the characterization systems and its subsystems

monitoring of its parameters (peak energy, energy and space profile, intensity...) Compton spectrometer (CSPEC) **D**Nuclear Resonance Scattering system (NRSS)

Beam Profile Imager (GPI) **Sampling Calorimeter (GCAL)**

The pile-up rising from the big amount of Compton backscattered photons make impossible to rely on an energyonly based rejection. For this reason a peculiar technique based on dual readout of **Cherenkov and Scintillation** light has been developed. The power of this method have been measured with radioactive sources and investigated in simulation for usage with the **ELI-NP** beams.

The rejection power of the dual readout echnique has been tested with a ²²Na source.

3x3x6cm³ LYSO crystal

The design and final construction of the low energy line NRSS detector.

Detailed **Background** studies have been performed using a dedicated **Geant4** simulation of geometry and realistic beams.

Main bkg source: Compton scattered ys at the NRS target \rightarrow NRSS in backward region $(\theta = 135^\circ)$ to move away from signal energy region.

Photons with energy comparable with signal showed from simulation to come out of time \rightarrow cut using fast BaF2 response.

Bibliography:

[1] C.A. Ur et al., The ELI-NP facility for nuclear physics, Nucl. Instr. and Meth. in Phys. Res. B 355, 198 (2015) [2] O. Adriani et al., Technical Design Report EuroGammaS proposal for the ELI-NP Gamma Beam System, arXiv:1407.3669 [3] M. Gambaccini et al., Gamma Beam Characterization Design Report, EuroGammaS deliverables report - D081 (2015). [4]M.G. Pellegriti et al., EuroGammaS gamma characterisation system for ELI-NP-GBS: The nuclear resonance scattering technique, Nucl. Instr. and Meth. in Phys. Res. A (2016).

1.5

2.5

Energy (MeV)

0.5

The NRSS has a fundamental role in giving a time and energy reference to the whole beam characterization system, through an inter-calibration procedure.

