The Δ E-TOF detector of the FOOT experiment: experimental tests and Monte Carlo simulations

Esther Ciarrocchi^{1,2}, Matteo Morrocchi², Nicola Belcari^{1,2}, Niccolo' Camarlinghi^{1,2}, Pietro Carra^{1,2}, Alberto Del Guerra^{1,2}, Marco Francesconi^{1,2}, Luca Galli², Aafke C Kraan², Silvia Muraro², Marco Pullia³, Valeria Rosso^{1,2}, Giancarlo Sportelli^{1,2}, Maria Giuseppina Bisogni^{1,2} ¹University of Pisa, Department of Physics – Pisa, Italy ²Istituto Nazionale di Fisica Nucleare (INFN), Section of Pisa - Pisa, Italy

³Fondazione Centro nazionale di adroterapia oncologica (CNAO) – Pavia, Italy

fondazione CNAO Centro Nazionale

di Adroterapia Oncologia

FragmentatiOn Of Target

The FOOT experiment

 Identification of the fragments produced in the human body during hadrontherapy and measurement of their production cross-section [1]

Radioprotection in space

BGO calorimeter Permanent ΔE-TOF

Highlights

- A ΔE-TOF detector **prototype** was irradiated with **proton** and **carbon** ion beams
- Coincidence **time** resolutions (**40-160 ps**) compatible with the FOOT requirements were obtained
- Energy resolutions of 5-13% were measured
- The predictive capability of the Monte Carlo simulation of the **optical transport** was tested
- The Monte Carlo can predict the light attenuation in the bar and the number of detected photons

Experimental results

ΔE-TOF detector

Beam monitoring

- Two layers of orthogonal plastic scintillator bars coupled to SiPMs at both ends
- Measures energy deposition in detector
 ΔE and Time of Flight TOF
- Contributes to provide velocity β and atomic number Z of the fragment
- •The FOOT Monte Carlo simulation suggests a **Z resolution** of **2-6%** for the Δ E-TOF detector

Experimental setup

• Two **EJ200** bars @ 11 cm relative distance (400 mm × 20 mm × 3 mm)

Scintillator quenching (Birks' law)

- Aluminum and black tape wrapping
- 4 Hamamatsu SiPMs coupled to each end
- WaveDREAM for bias & readout [3]
- Proton and carbon ion beams irradiations of different energy and position @ CNAO

Monte Carlo simulations

• Proton energy deposition as input (FLUKA)

Monte Carlo simulation test and future applications

Absolute number of photons

- Scintillation emission spectrum (Matlab)
- Geometry & optical transport (Geant4, [4])
 SiPM photon detection efficiency (Matlab)

Investigate the impact on the detector time and energy resolution of geometrical factors, such as:
 the thickness of the plastic scintillator bar

> different SiPM arrangements (number of SiPMs, micro-cell size)

Predict the energy and time resolution of the final ΔE-TOF detector

References

[1] Patera V et al. "The Foot (Fragmentation Of Target) Experiment", 2017

[2] Vlachoudis V. "FLAIR: a powerful but user friendly graphical interface for FLUKA", 2009

[1] Patera V et al. "The Foot (Fragmer
 [2] Vlachoudis V. "FLAIR: a powerful k
 [3] Galli L. poster @ this conference

Scan me [4] Agostinelli S et al. "GEANT4—a simulation toolkit", 2003

Frontier Detectors for Frontier Physics 14th Pisa meeting on advanced detectors La Biodola • Isola d'Elba • Italy 27 May - 2 June, 2018

Contact: esther.ciarrocchi@pi.infn.it

Visit G. Silvestre poster for the FOOT silicon strip detectors!