Development of an ultra thin monitor for charged particle beams

Proton therapy
- Maximum dose near end of proton track \(\rightarrow \) Bragg peak
- Low lateral scattering in the tissue \(\rightarrow \) beam stays focused on the tumor
- Bragg peak position adjustable by beam energy \(\rightarrow \) Spread Out Bragg Peak (SOBP)
- Therapeutic energy range : 70 – 230 MeV
- Beam current \(\equiv \) nA
- Application : resistant, inoperable (skull) or pediatric cancers

Pencil Beam Scanning Technique

Test of a detector prototype
- One dimension sampling (polymer + gold) and experiment with SiN membrane

Secondary Electron Emission (SEE)
- Surface process
- Only electrons close to the surface escape
- Low energy (few eV) \(\rightarrow \) vacuum mandatory
- Yield \(\equiv \) dI/dx \(\rightarrow \) Strong signal \(\equiv \) High Z

Detector principle
- Beam sampling with thin SEE emissive pattern deposited on thin dielectric substrate layer
- (X-ray) sampling using SEE currents from strips
- Signal readout from the emission side \(\rightarrow \) unaffected by EM fields in the beamline
- No filling gas \(\rightarrow \) no mechanical constraint \(\rightarrow \) thin materials usable

Future studies

Acknowledgements
The authors wish to acknowledge Denis Tendelier from the LHCb, Denis Bernard from the LIRL and HoFells. This project is funded by the ANR (ANR-19-CE31-0002) and the Labex FCATE.