## maXs: Micro-calorimeter Arrays for High **Resolution X-Ray Spectroscopy in Atomic Physics**

M. O. Herdrich<sup>1,2,3</sup>, D. Hengstler<sup>4</sup>, C. Schötz<sup>4</sup>, J. Geist<sup>4</sup>, M. Keller<sup>4</sup>, A. Fleischmann<sup>4</sup>, S. Kempf<sup>4</sup>, L. Gastaldo<sup>4</sup>, C. Enss<sup>4</sup>, S. Trotsenko<sup>3</sup>, T. Morgenroth<sup>3</sup>, R. Märtin<sup>2,3</sup>, G. Weber<sup>2,3</sup>, R. Schuch<sup>5</sup>, T. Stöhlker<sup>1,2,3</sup>

<sup>1</sup>Institut für Optik und Quantenelektronik, FSU Jena, Germany <sup>2</sup>Helmholtz-Institut Jena, Germany <sup>3</sup>GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany <sup>4</sup>Kirchhoff-Institut für Physik, RKU Heidelberg, Germany <sup>5</sup>Manne Siegbahn Institut, Stockholm, Sweden



Cryogenic microcalorimeters combine the advantages of many of the currently used detectors for spectroscopy applications:

- Energy resolution up to a few eV (1.6 eV @ 6 keV [1], E independent)
- Applications between XUV and hard x-rays (100 eV 100 keV)
- Pixelated detector surface(currently 64 pixel [2], several 1000 planned)
- Low background and high efficiency (ideal for low event rates)

 $\Rightarrow$  Ideal detectors for x-ray spectroscopy

Metallic Magnetic Micro-Calorimeters (MMCs) are energy dispersive particle detectors operated at temperatures below 50 mK, which use a paramagnetic temperature sensor to convert the temperature upon the absorption of a single x-ray photon (or particle) into a change of magnetic flux within a superconducting meander. The magnetic flux is coupled into a highly sensitive detector, called **S**uperconducting **Q**uantum Interference **D**evice (SQUID), where it causes a change in electrical current flow. Finally, a chain of SQUIDs is used to amplify the signal. Arrays of MMC sensors organized in sets of two can be placed onto a single chip forming pixelated detectors like the *maXs-detectors*.





placed in front of an EBIT [3].



X-rays from electronic processes in the ions can be observed.





