CMS Electromagnetic Calorimeter Calibration and Alignment

Tanvi Wamorkar, on behalf of the CMS collaboration Northeastern University

ECAL Barrel 61200 crystals ECAL Endcap 14648 crystals Preshower 137200 Pb/Si strips

Reconstructing energy with ECAL $E_{e,\chi} = \sum_{i} [S_{i}(t) \times c_{i} \times A_{i}] \times G(\eta) \times F_{e,\chi}$

A_i : Single channel amplitude (Multifit reconstruction)

S_i(t): Laser Monitoring

PM2018 (14th Pisa Meeting on Advanced Detectors)

CMS ECAL must provide

- Precise energy reconstruction resolution
- Precise position resolution for reconstructed deposits
- Fast and efficient readout for online selection

	ECAL PbWO ₄ crystals
•	Homogenous medium
•	Fast light emission : ~80% in 25 ns
•	Small radiation length : $X_0 = 0.89$ cm
•	Small Moliere radius : R _M = 2.10 cm

- ECAL crystals change response due to radiation exposure (time dependent)
- Response is **monitored with a laser system** injecting light in every ECAL crystal
- PbWO₄ crystals partially recover during periods with no exposure
- Monitoring corrections obtained/applied promptly (~48h)

<u>G(η): Absolute calibration and η scale</u>

- Electrons from Z→ee events are used to calibrate the η dependence of energy reconstruction and its absolute scale
- Z mass peak is used to fix the overall absolute calibration (ADC to GeV), matching data to a detailed simulation of the detector
- Z mass peaks reconstructed with electrons in a single Φ ring, used to correct the relative scale between different η regions

• Reasonable radiation resistance

c_i : Intercalibration

- Equalizes the response of each single crystal to the deposited energy
- Φ symmetry: energy flux around Φ rings (constant η) should be

Z electrons

- combination

____ E/p

uniform - IC corrects for non-uniformity CMS Preliminary 2017 - ECAL Barrel

- $\pi^0 / \eta \rightarrow \gamma \gamma$: In a Φ ring, use IC to improve M($\gamma \gamma$) resolution for π^0 and η resonances
- E/p: compare isolated
 electron energy from ECAL
 and momentum tracker,
 calculate IC to correct
 discrepancies

1.4 .4 1.2 .4 0.8 .4 0.8 .4 0.4 .4 0.4 .4 0.2 .4 .6 0.2 .4 .6 0.2 .4 .6 0.2 .4 .6 0.2 .4 .6 0.2 .4 .6 0.2 .4 .6 0.2 .4 .6 0.2 .4 .6 0.2 .4 .6 0.2 .4 .6 0.2 .4 .6 0.2 .4 .6 0.2 .4 .6 0.2 .4 .6 0.2 .4 .6 0.3 1 1.2 1.4 .7

-

F_{e,χ}: Particle energy corrections

 Large amount of material before ECAL - high probability of bremsstrahlung emission for electrons and conversion of photons

ECAL Alignment

- Relative alignment of the ECAL crystals and CMS tracker, measured using electrons from Z→ee events
- Alignment procedure uses low bremsstrahlung electrons from Z→ee events collected at the beginning of 2017 data taking period
- Angular distance between extrapolated track & cluster position is minimized for both e⁺ and e⁻ wrt to MC simulation

 $\chi_{\pm}^{2} = \sum_{leptons} \frac{(\Delta \varphi - \langle \Delta \varphi_{\pm}^{MC} \rangle)^{2}}{\varepsilon_{\varphi}^{2}} + \frac{(\Delta \eta - \langle \Delta \eta_{\pm}^{MC} \rangle)^{2}}{\varepsilon_{\eta}^{2}}$

- Plots show residual difference in Δη and ΔΦ b/w position of the ECAL supercluster and the extrapolated track position, using the point of closest approach to the supercluster
- Relative ECAL-tracker precision of 3x10⁻³ in η units and 6x10⁻³ in Φ units achieved in the endcaps
- Meets the ECAL alignment goals of 4x10⁻³ in η units and 20x10⁻³ in Φ units for electron-ID and diphoton resonance reconstruction

- Clustering algorithm gathers clusters of energy deposit into superclusters to recover that information
- Supercluster energy is corrected using a multivariate approach
- For endcap e/γ, energy deposited in preshower is added to the supercluster
- Dielectron invariant mass distribution (2017 data) using Z→ee events
- Only low bremsstrahlung electrons are considered
- Distributions show improved invariant mass resolution in both ECAL barrel and endcap

