Performance of the CMS Electromagnetic **Calorimeter in the LHC Run II**

Nazar Bartosik (Istituto Nazionale di Fisica Nucleare, Torino) on behalf of the CMS Collaboration

PM2018 (14th Pisa Meeting on Advanced Detectors) 27th May – 2nd June, *La Biodola, Isola d'Elba (Italy)*

1. Key design considerations

Measures energy of electromagnetically interacting particles: scintillation particle \rightarrow PbWO₄ crystal \longrightarrow APD/VPT \rightarrow readout electronics

To perform well in the harsh LHC environment ECAL was designed to be:

- homogeneous: high energy resolution, compact, mechanically simple;
- hermetic: minimum dead space, reliable measurement of missing E_{T} ;
- fine-grain: 22×22 mm² crystals; [360-fold in φ, 2x85-fold in η]
- responsive: 10 ns scintillation decay time in PbWO_{4.}

2. Structure of the CMS ECAL

5. Energy reconstruction

Energy of a particle reconstructed from a cluster of multiple channels (i) to account for spread by the magnetic field + interaction with Silicon Tracker and dead material:

$$E_{e/\gamma} = F_{e/\gamma} \cdot [G \cdot \sum_{i} S_i(t)C_iA_i] + E_{\rm ES}$$

- A_i signal amplitude; C_i intercalibration coefficient;
- *S_i* correction for response time variations;
- **G** ADC > GeV global scale; $F_{e/\gamma}$ cluster correction;

Signal amplitude affected by large pile-up (40+) \rightarrow 10 consecutive samples used in reconstruction Multi-fit performed to estimate 1 in-time and ≤ 9 out-of-time signal amplitudes (A_i)

• EE-

• EE+

$$\chi^{2} = \sum_{i=1}^{N} \frac{\left(\sum_{j=1}^{M} A_{j} p_{ij} - S_{j}\right)}{\sigma_{S_{i}}^{2}}$$

CMS Preliminary 2017

EB-

• EB+

verage hit time (ns)

0.8

0.6

p_{ij} - pulse height; S_i – electronic noise; • sum over **N** samples, *M* bunch crossings.

Timing stability of ~1ns required to maintain high energy resolution by rejecting noise, pile-up, etc.

of 200ps \rightarrow negligible impact on reconstruction

CMS Preliminary

Barrel-Barre

EB

 $\sqrt{s} = 13 \text{ TeV}, L = 2.2 \text{ fb}^{-1}$

Data

Z+jets

- degrades with absorbed radiation dose
- mildly recovers when not irradiated

Timing conditions updated after each shift

Crystal transparency degrades with absorbed radiation dose → each crystal continuously monitored with a laser system for calibrations

Scintillation yield of PbWO₄ and gains of APDs sensitive to temperature. → temperature maintained by water cooling with 0.02 °C precision

3. Role in CMS physics analyses

Energy measurements by ECAL are crucial for physics reach of CMS.

â Ś

Measurement of $\sigma(H)$ in the $H \rightarrow \gamma \gamma$ final state:

- high photon-energy resolution ($\geq 1\%$);
- precise direction measurement;

5 0.4 0.2 23/06 23/07 22/08 21/10 21/09 Date (day/month)

£ 23

Cluster corrections ($F_{e/\gamma}$) determined using multivariate approach, tuned on MC simulations + Superclusters (SC) to recover bremsstrahlung **radiation** + **Preshower energy** (in forward region)

See more in the poster by Tanvi Wamorkar

6. Energy resolution

Relative energy resolution of electrons from $Z \rightarrow ee$ decays of two types:

- golden: $E_{3x3} / E_{SC} \ge 0.94$
- bremsstrahlung: E_{3x3} / E_{SC} < 0.94

Resolution significantly improved after the dedicated calibration using the full 2017 dataset

CMS Preliminary 2017

42.6 fb⁻¹ (13 TeV) CMS Preliminary 2017 0.08

42.6 fb⁻¹ (13 TeV)

4. Position reconstruction

