Compton Spectrometer

The aim of the Compton spectrometer is to reconstruct the ELI-NP γ energy spectrum with a non-destructive method. The basic idea is to measure the energy and the scattering angle of electrons recoiling at small angles from Compton interactions of the beam on a micrometric target (1-100 μm). The scattered gamma is also acquired for trigger purpose.

Expected Performances

<table>
<thead>
<tr>
<th>Beam energy distribution</th>
<th>Reconstructed beam energy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compton Spectrometer

- **Beam peak energy uncertainties**
 - $E_{\gamma} - E_{\gamma_{\text{peak}}}$
 - $E_{\gamma_{\text{stat}}}$

- **Beam bandwidth uncertainties**
 - σ_{BW}
 - ΔE_{γ}
 - $\Delta E_{\gamma_{\text{stat}}}$

Gamma Detector

- **Energy resolution at 1332 keV**
 - $R_g = 0.759\pm0.045$ keV

Si-strip preliminary tests:

- **Cluster identification**
- **Signal shape identification**

References

Compton Spectrometer

- **Compton Spectrometer**
 - High precision measurement and monitor of the photon energy spectrum by providing the peak energy and the energy bandwith.
- **Nuclear Resonant Scattering System**
 - Detects the resonant gamma decays of selected nuclear levels in order to provide an absolute energy calibration and allow the inter-calibration of detectors.
- **Beam Profile Imager**
 - Check beam alignment and spatial distribution.
- **Gamma Calorimeter**
 - Provide the beam average energy and intensity.

Gamma Beam Characterization System

- **Signal shape identification**
- **Cluster identification**

References