

A Compton Spectrometer to monitor the ELI-NP beam energy

R.Borgheresi^{*,1,2}, O.Adriani^{1,2}, S.Albergo^{3,4}, M.Andreotti⁵, G.Cappello³, P.Cardarelli⁵, R.Ciaranfi¹, E.Consoli^{5,6}, G.Di Domenico^{5,6}, F.Evangelisti⁵, M.Gambaccini^{5,6}, G.Graziani¹, M.Lenzi¹, F.Maletta¹, M.Marziani^{5,6}, G.Paternò⁵, G.Passaleva¹, A.Serban^{1,a}, S.Squerzanti⁵, O.Starodubstev¹, A.Tricomi^{3,4}, A.Variola⁹, M.Veltri^{1,10}

ELI-NP Project

The ELI-NP facility (Extreme Light Infrastructure - Nuclear Physics), currently under construction near Bucharest, is the pillar of the European project ELI dedicated to the generation of high intensity gamma beams for frontier research in nuclear physics [1]. The ELI-NP gamma beam will be obtained by collimating the radiation emerging from incoherent inverse Compton scattering of a laser light off a relativistic electron beam.

Gamma beam characteristic [2]:

Compton Spectrometer

The aim of the Compton spectrometer is to reconstruct the ELI-NP γ energy **spectrum** with a non-destructive method. The basic idea is to measure *the energy* and the scattering angle of electrons recoiling at small angles from Compton interactions of the beam on a micrometric target (1-100 μ m). The scattered gamma is also acquired for trigger purpose.

Expected Performances

Specification
200 keV
19.5 MeV
steplessly
$\leq 0.5\%$
$\geq 95~\%$
$\leq 2.6{\cdot}10^5$

Gamma Beam Characterization System [3]

• Compton Spectrometer

• Beam peal	k en	ergy	un	cer	taint
${ m E}_{oldsymbol{\gamma}}$ [MeV]	2.5	5	18	.5	
$\frac{\sigma_{\text{stat}}(\text{E}_{\gamma})}{\text{E}_{\gamma}}$ [%]	0.04	0.02	0.0)2	
$rac{\sigma_{ m syst}({ m E}_{\gamma})}{{ m E}_{\gamma}}$ [%]	0.11	0.06	0.0)2	
• Beam ban	dwit	h ur	ice	rtai	nties
• Beam ban $\frac{1}{E_{\gamma}}$ [M	dwit	h ur	1 Ce 2.5	rtai 5	nties 18.5
• Beam ban E_{γ} [M Simulated B	dwit [eV] 3W [k	eV]	1Ce 2.5 6	rtai 5 13	nties 18.5 34
• Beam ban E_{γ} [M Simulated B Experimenta	dwit [eV] 3W [k al σ [k	eV]	2.5 6 12	rtai 5 13 8	nties 18.5 34 26
• Beam ban E_{γ} [M Simulated B Experimenta σ_{stat} (BW	dwit [eV] 3W [k al σ [k) [keV	eV] (eV] (eV]	1Ce 2.5 6 12 1.9	rtai 5 13 8 0.8	nties 18.5 34 26 2.5

Frontier Detectors

for Frontier Physics

14th Pisa meeting on

La Biodola • Isola d'Elba • Italy

advanced detectors

27 May - 2 June, 2018

Electron Detector

The energy of the Compton scattered electron (T_e) is precisely measured

with an high purity germanium detector (HPGe) and the scattering angle

 (ϕ) is determined by a double sided silicon strip detector.

 $E_{beam} =$ $\overline{\cos(\phi)\sqrt{T_{e}\cdot(T_{e}+2m_{e})}-T_{e}}$

Detector design

- \rightarrow The HPGe crystal is built in a planar custom configuration by CANBERRA:
- \rightarrow Double sided silicon strip detector produced by Hamamatsu:

3000

Gamma Detector

The scattered photon is detected in coincidence with the electron to provide a trigger for the data acquisition of the spectrometer. This coincidence is very effective in suppressing the background acquisition from pair production, Compton photons and beam particle.

Detector design

 \rightarrow Small calorimeter of 4x4 Barium Floride (BaF₂) crystals $(1.2 \times 1.2 \times 5 \text{ cm}^3)$ read out by H12700A HAMAMATSU multianode PMT.

BaF₂ detector tests:

High precision measurement and

monitor of the photon energy spectrum by providing the peak energy and the energy bandwith.

• Nuclear Resonant Scattering System [4]

Detects the resonant gamma decays of selected nuclear levels in order to provide an absolute energy calibration and allow the inter-calibration of detectors.

• Beam Profile Imager [5]

Check beam alignment and spatial distribution.

• Gamma Calorimeter [6, 7] Provide the beam average energy and intensity.

References

- [1] C.A. Ur et al., *The ELI-NP facility for nuclear physics*, Nucl. Instr. and Meth. in Phys. Res. B 355, 198 (2015).
- [2] Dimiter L. Balabanski, Experiments with brilliant gamma beams at ELINP:A glimpse in the future, J. Phys.: Conf. Ser. 966 012018 (2018).
- [3] O.Adriani et al., Technical Design Report EuroGammas proposal for the ELI-NP Gamma beam System, arXiv:1407.3669 [physics.acc-ph].

- [4] M.G. Pellegriti et al., The nuclear resonance scattering calibration technique for the EuroGammaS gamma characterisation system at ELI-NP-GBS, J.inst. 12.03 (2017).
- [5] P.Cardarelli et al., A gamma beam profile imager for ELI-NP Gamma Beam System, Nucl. Instr. and Meth. in Phys. Res. A, 893, page 109-116, (2018).
- [6] M.Lenzi et al., A new-concept gamma calorimeter at ELI-NP, J.inst.12.02 (2017).
- [7] R. Borgheresi et al., Gamma beam characterization system for ELI-NP: The gamma absorption calorimeter, 2016 IEEE NSS/MIC/RTSD, (2016).

- ¹Istituto Nazionale di Fisica Nucleare, INFN-Sezione di Firenze, Italy ²Università degli Studi di Firenze, Italy ³Istituto Nazionale di Fisica Nucleare, INFN-Sezione di Catania, Italy ⁴Università degli Studi di Catania, Italy ⁵Istituto Nazionale di Fisica Nucleare, INFN-Sezione di Ferrara, Italy ⁶Università degli Studi di Ferrara, Italy ⁷*Istituto Nazionale di Fisica Nucleare, INFN-Sezione di Roma, Italy* ⁸Università degli Studi di Roma La Sapienza, Italy
- ⁹Istituto Nazionale di Fisica Nucleare. INFN-Laboratori Nazionali di Frascati, Italy

¹⁰Università degli Studi di Urbino, Italy

^aOn leave from National Institute for Nuclear Physics and Engineering-Horia Hulubei, Magurele, Romania

