

Istituto Nazionale di Fisica Nucleare

Charge sharing of single photons in finely segmented pixel detectors

A. Andreazza¹, M. Citterio¹, P. Fontana¹, M. Ianna¹, T.Lari¹, V. Liberali¹, S.Monzani¹, F. Ragusa¹, C. Sbarra², A. Sidoti², A. Stabile¹

¹Università di Milano and INFN Sezione di Milano, ²Università di Bologna and INFN Sezione di Bologna Thanks to: A. Castoldi and C. Guazzoni (Politecnico di Milano and INFN) and T. Hirono and N. Wermes (Universität Bonn)

Introduction

- Photon source are common for calibration of silicon pixel detector
- Spectrum characterized by a photoelectric peak and a low energy shoulder
- Width of the peak and shoulder size are sensitive to the non-containement effects diffusion, cross talk and photoelectric range
- purpose of this study is to understand the effects of these features and to provide a good detector simulation

 $\sigma = \sqrt{2Dt}$ $k_{\rm B}T$

D: diffusion coefficiente µ: charge carrier mobility T: charge collection time T: temperature Diffusion: charges are divided into different pixels, with a distribution of σ
Cross talk: capacitive coupling

HVR-CMOS sensors

HV CMOS sensors features high voltage and low voltage electronics on the same chip. CMOS circuitry (preamplifier, comparator...) is separated from the HV substrate with an N well. They can be capacitively coupled to the FE chip, instead of being bump bonded.

The inverse polarization voltage creates a depletion region which increases the probility that a particle interacts. This is the sensible zone of the detector.

between two adjacent pixels - Range of photon electrons: partial deposit of energy

KC53A chip and LFCPIX Demonstrator

The KC53A demo chip is realised in BCD8 and contains 4 passive pixels and 8 active pixels (with amplifier). The pixel dimensions are 50x250 μm² and the substrate resistivity is 125 Ω·cm. Passive pixels

Have been characterized.

Each pixel shows an injection capacitance with a nominal value of 2 fF. Matrix of 36x158 pixel, 2 prototypes LFCPIXv1/2 (results from 2).

GEANT4 Simulation

Simulation to understand the non-containment effects

Simulation of the interaction

- Definition of the source of radiation: monochromatic photon source
- Definition of the geometry of the detector: 250 μm Si, source material

Digitization (charge collection)

- Definition of the electrodes size and their distance and their cross talk
- Implementation of the characteristics of the detector, as temperature, type (n or p), geometry, material and inverse polarization
- calculation of the electric field and diffusion
- conversion of energy in number of electron-hole pairs
- determination of the number of involved pixels and their collected charge

LFCPIX simulation: diffusion and photoelectron range

A single monochromatic peak varied between 10 and 60 KeV. Depletion voltage is at 160 V with a noise fixed at

KC53A Simulation

50 electrons.

Mean photoelectron's range [µm] Charge motion is simulated inside the material, charge division on pixels. It is assumed a linear electric field and a crosstalk between close pixels.

LFCPIX Experimental measurements

For each run one day of data taking, LFCPIXv1 limited in range because of a limit in the breakdown voltage: • Data shape in agreement with

Peak as a superposition of contained+not contained events

- Data shape in agreement with simulation,
- Photoelectric peak not described by this simplified model

KC53A Experimental measurements

X rays (50 keV on a molybdenum anode), different bias voltage scanning different depletion widths

$V_{\rm bias}$	Depletion	N_{peak}	P _{shoulder}
[\]	[µm]	[events]	[events/ke ⁻]
10	11	3014	1411
20	16	4389	1448
30	20	5468	1516
40	23	6420	1736
50	25	7085	1834
60	28	8014	2041

- Good agreement in shape between data and simulation
- Simulation underestimates absolute size of diffusion effects

XIV Pisa Meeting on Advanced Detectors

