Charge sharing of single photons in finely segmented pixel detectors

A. Andreaza, M. Citterio, P. Fontana, M. Ianna, T. Lari, V. Liberati, S. Monzani, F. Ragusa, C. Sbarra, A. Sidoti, A. Stabile

1Università di Milano and INFN Sezione di Milano, 2Università di Bologna and INFN Sezione di Bologna

Thanks to: A. Castoldi and C. Guazzoni (Politecnico di Milano and INFN) and T. Hirono and N. Wermes (Universität Bonn)

Introduction

- Photon source are common for calibration of silicon pixel detector
- Spectrum characterized by a photoelectric peak and a low energy shoulder
- Width of the peak and shoulder size are sensitive to the non-containment effects diffusion, cross talk and photoelectric range
- purpose of this study is to understand the effects of these features and to provide a good detector simulation

\[
\sigma = \sqrt{2D\mu T}
\]

- Diffusion: charges are divided into different pixels, with a distribution of \(\sigma \)
- Cross talk: capacitive coupling between two adjacent pixels
- Range of photon electrons: partial deposit of energy

KC53A chip and LFCPIX Demonstrator

The KC53A demo chip is realised in BCD8 and contains 4 passive pixels and 8 active pixels (with amplifier). The pixel dimensions are 50×250 \(\mu m^2 \) and the substrate resistivity is 125 \(\Omega \) cm. Passive pixels have been characterized.

Each pixel shows an injection capacitance with a nominal value of 2 fF. Matrix of 36×158 pixel, 2 prototypes LFCPIXv1/2 (results from 2).

LFCPIX simulation: diffusion and photoelectron range

A single monochromatic peak varied between 10 and 60 keV. Depletion voltage is at 160 V with a noise fixed at 50 electrons.

Charge motion is simulated inside the material, charge division on pixels. It is assumed a linear electric field and a cross talk between close pixels.

LFCPIX Experimental measurements

For each run one day of data taking, LFCPIXv1 limited in range because of a limit in the breakdown voltage:

- Peak as a superposition of contained/not contained events
- Data shape in agreement with simulation
- Photoelectric peak not described by this simplified model

HVR-CMOS sensors

HV CMOS sensors features high voltage and low voltage electronics on the same chip. CMOS circuitry (preamplifier, comparator…) is separated from the HV substrate with an N well. They can be capacitively coupled to the FE chip, instead of being bump bonded.

The inverse polarization voltage creates a depletion region which increases the probability that a particle interacts. This is the sensible zone of the detector.

GEANT4 Simulation

Simulation to understand the non-containment effects

Simulation of the interaction:
- Definition of the source of radiation: monochromatic photon source
- Definition of the geometry of the detector: 250 \(\mu m \) Si, source material
- Digitalization (charge collection):
 - Definition of the electrodes size and their distance and their cross talk
 - Implementation of the characteristics of the detector, as temperature, type (n or p), geometry, material and inverse polarization
 - Calculation of the electric field and diffusion
 - Conversion of energy in number of electron-hole pairs
 - Determination of the number of involved pixels and their collected charge

KC53A Simulation

\(K_{\alpha} \) and \(K_{\beta} \) of Copper and Yttrium analyzed. Plots: \(Y (14.8, 16.7 \text{ keV}) \)

- \(\mu \) for contained events: 4.11±0.03 mm\(^{-1}\) > total absorption coefficient \(\mu = 2.51 \text{ mm}\(^{-1}\) \)
- Most photoelectrics conversion far from surface are dispersed by diffusion

KC53A Experimental measurements

X rays (50 keV on a molybdenum anode), different bias voltage scanning different depletion widths

- Good agreement in shape between data and simulation
- Simulation underestimates absolute size of diffusion effects

XIV Pisa Meeting on Advanced Detectors
27 May - 2 June 2018. La Biodola, Isola d’Elba, Italy.