

Progress Towards the Development of Cooling Demonstrator of the CBM Silicon Tracking System

K. Agarwal¹, P. Koczon², E. Lavrik¹, H.R. Schmidt^{1,2}, O. Vasylyev², for the CBM Collaboration

¹ Eberhard Karls Universität Tübingen, Tübingen, Germany ² GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany

Bi-Phase CO₂ cooling at -25°C for FEE (40kW in ~2m³)

Forced N₂ cooling directly for sensors (aim ≤ -10°C)

TIM Optimisation

T _{H2O} = 15°C, Q = 160W, Fr = 11.1g/s			
Interface #1	Interface #2	Maximum Fin Temp. (°C)	
		Exp. (PT100)	Thermal FEA
Grease	Grease	29.7	32.0
	C-Foil	29.6	32.0
C-Foil	Grease	33.7	32.1
	C-Foil	33.9	32.1

Viscous TIM (grease) is better Relative measurements with H₂O

OUTLOOK

- Commissioning of demo CO₂ cooling plant
- Exp. verification of FEE cooling calculations
- Thermal characterization of feedthroughs
- Mechanical integration, part production → experience from mSTS@SIS18 (Aug-Sep'18)

Sensor cooling tests under realistic conditions (with least additional X₀/station)