Progress Towards the Development of Cooling Demonstrator of the CBM Silicon Tracking System K. Agarwal¹, P. Koczon², E. Lavrik¹, H.R. Schmidt^{1,2}, O. Vasylyev², for the CBM Collaboration ¹ Eberhard Karls Universität Tübingen, Tübingen, Germany ² GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany Bi-Phase CO₂ cooling at -25°C for FEE (40kW in ~2m³) Forced N₂ cooling directly for sensors (aim ≤ -10°C) ## **TIM Optimisation** | T _{H2O} = 15°C, Q = 160W, Fr = 11.1g/s | | | | |---|-----------------|------------------------|-------------| | Interface
#1 | Interface
#2 | Maximum Fin Temp. (°C) | | | | | Exp. (PT100) | Thermal FEA | | Grease | Grease | 29.7 | 32.0 | | | C-Foil | 29.6 | 32.0 | | C-Foil | Grease | 33.7 | 32.1 | | | C-Foil | 33.9 | 32.1 | Viscous TIM (grease) is better Relative measurements with H₂O ## **OUTLOOK** - Commissioning of demo CO₂ cooling plant - Exp. verification of FEE cooling calculations - Thermal characterization of feedthroughs - Mechanical integration, part production → experience from mSTS@SIS18 (Aug-Sep'18) Sensor cooling tests under realistic conditions (with least additional X₀/station)