

The Gigatracker detector of the NA62 experiment at CERN SPS

G. Aglieri Rinella^a, D. Alvarez Feito^a, R. Arcidiacono^{b,c}, C. Biino^b, S. Bonacini^a, A. Ceccucci^a, S. Chiozzi^d, E. Cortina Gil^e, A. Cotta Ramusino^d, J. Degrange^a, L. Federici^{a*}, M. Fiorini^d, E. Gamberini^a, A. Gianoli^d, J. Kaplon^a, A. Kleimenova^e, A. Kluge^a, A. Mapelli^a, F. Marchetto^b, E. Migliore^b, E. Migliore^b, E. Migliore^b, E. Migliore^b, E. Migliore^b, E. Migliore^b, B. Velghe^e, M. Morel^a, J. Noël^a, M.Noy^a, L. Perktold^a, M. Perrin-Terrin^g, P. Petagna^a, F. Petrucci^d, K. Poltorak^a, G. Ruggiero^f, B. Velghe^e, H. Wahl^d.

^aCERN, Geneva, Switzerland ^bINFN Sezione di Torino and University of Torino, Italy ^cUnivesità degli studi del Piemonte Orientale, Vercelli, Italy ^dINFN Sezione di Ferrara and University of Ferrara, Italy

Frontier Detectors for Frontier Physics 14th Pisa Meeting on Advanced Detectors May 27 – June 2 2018 • La Biodola, Isola d'Elba (Italy) ^eUniversité Catholique de Louvain, Louvain-la-Neuve, Belgium ^fLancaster University, Lancaster, UK ^gAix Marseille Univ., CNRS/IN2P3, CPPM, Marseille, France

Abstract

The NA62 experiment at the CERN SPS is a fixed target experiment designed to measure the branching ratio of the ultra-rare Kaon decay $K^+ \rightarrow \pi^+ \nu \nu$. The experiment uses a high-momentum K^+ decay in flight to increase the rejection power of the main background: $K^+ \rightarrow \pi^+ \pi^0$. The Gigatracker is a hybrid silicon pixel detector, exposed to a 750 MHz high-energy charged hadron beam, built to give an accurate measurement of K⁺ momentum and direction together with a high precision measurement of the beam particle arrival time (better than 200ps RMS resolution). It is made by three stations placed right before the K⁺ decay region and inserted around two achromats. The detector works in vacuum (~10⁻⁶ mbar) at about -10°C. Each station is made by a 200 um thick silicon sensor readout by 10 TDCPix, custom 100 um thick ASICs, and cooled by an innovative double circuit silicon micro-channel cooling system. All these parts are designed to minimize the total material budget which, in the final detector, amounts to less than 1.5% X₀ for the three stations. In order to sustain the high rate of incoming particles each TDCPix, operating in a self triggered mode, is equipped with four 3.2 Gb/s serializers sending data to the detector DAQ system based on a read-out card per TDCPix chip sending trigger-matched hits to 6 PC servers. I will describe the whole detector and present some of the results from data collected during the 2016 and 2017 NA62 runs.

