

¹ Università di Pavia

² Università di Siena

³ Università di Padova

Radiation tolerance characterization of geiger-mode CMOS avalanche diodes for a dual-layer particle detector

M. Musacci^{1,6}, G. Bigongiari^{2,6}, P. Brogi^{2,6}, C. Checchia^{3,6}, G. Collazuol^{3,6}, G.-F. Dalla Betta^{4,6}, A. Ficorella^{4,6}, P.S. Marrocchesi^{2,6}, S. Mattiazzo^{3,6},

F.Morsani⁶, S. Noli^{1,6}, L. Pancheri^{4,6}, A. Savoy Navarro^{5,6}, L. Silvestrin^{3,6}, F. Stolzi^{2,6}, A. Sulaj^{2,6}, J. Suh^{2,6}, L. Ratti^{1,6}, C. Vacchi^{1,6}, M. Zanoli^{4,6},

M. Zarghami^{4,6}

marco.musacci01@universitadipavia.it

⁴ Università di Trento

PARIS ⁵ Laboratoire APC, University Paris-Diderot/ CNRS

Abstract

A SPAD (Single Photon Avalanche Diode) array, fabricated in a 180 nm CMOS technology with high voltage (HV) option, has been investigated in terms of radiation tolerance in view of the fabrication of a dual-tier detector for charged particles based on the coincidence of signals coming from pairs of vertically aligned pixels. The DUTs (device under test) were irradiated with 10 keV X-rays up to a dose of 1 Mrad(SiO₂) and with neutrons up to 10¹¹ cm⁻². Both the irradiation and measurement were performed at room temperature. Based on the results from this characterization, a new chip has been designed in a 150 nm CMOS technology in two mirrored versions ready for vertical integration.

- - Single layer designed in a 180 nm high voltage CMOS technology.
 - 17 columns x 18 rows array.
 - The array includes different SPADs with different size and technology layers.
 - Different front-end electronics providing an output pulse with programmable duration.
 - The pixel includes the readout electronics and the sensor in a monolithic structure.

Total ionizing dose effects

- A set of DUTs were exposed to a total ionizing dose of 1 Mrad(SiO₂) using a 10 keV Semiconductor Irradiation System at the Physics and Astronomy Department of the University of Padova
- No significant variations have been measured considering the mean breakdown voltage and standard variation.
- The average dark count rate (DCR) is found to increase by 30%, from 251 kHz/mm² to 365 kHz/mm².

• The higher DCR may be due to a radiation-induced increase in the state density at the interface above

SPADs features

- Diode bias votage : $V_{SPAD} = V_{BD} + V_{FX}$
- Active area with different dimensions:
 - 20 μm x 20 μm, Ο
 - 30 μm x 30 μm, Ο
 - 36 μm x 40 μm. Ο
- Two sensor topologies:
 - DPD (presented in this work), Ο
 - DPH. Ο

Front-end electronics

- Passive quenching,
- Active quenching.

VDD(1.8 V)

 \checkmark

Ionostable

Neutron radiation effects

 $DCR@Vex = 1.5 V [10^5 Hz/mm^2]$

The test vehicles were irradiated at the INFN Laboratori Nazionali di Legnaro with different fluences $(10^{10} \text{ n/cm}^2 \text{ and } 10^{11} \text{ n/cm}^2)$.

Vb

 \checkmark

- Both chips have been also measured after an annealing procedure at 60° for 80 minutes.
- Results relevant to irradiation with a fluence of 10¹¹ n/cm² are presented.
- No front-end electronics degradation is expected since MOSFET transistors are virtually insensitive to bulk damage.
- No substantial change in the mean BD voltage is detected.
- An increase of a factor of a few hundreds is detected in the mean DCR due to the creation of deep level defects in the depleted region of the detector.
- After the annealing procedure, the mean $DCR@V_{ex} = 2 V$ is found to decrease. In Before particular, considering the smallest irradiation SPAD a reduction by 17% is registered, mean = 21.93 V while the biggest ones shows a reduction^{3.5} std dev = 287 mV by 11%. Entri Entri Temperature tests show a reduction both in BD voltage and DCR, as the temperature is decreased, as expected. Mean BD voltage decreases from 22.1 V 0.5 (at 25°C) to 20.8 V (at -30°C), while the 20 DCR, at V_{FX} = 2 V, is reduced from 229 kHz (at 25°C) to 23.6 kHz (at -30 °C).

New designed chip features

- Two mirrored chips (APiX2 Father and Son) were designed in a standard 150 nm CMOS technology in view of their vertical integration (bump bonding). 57 mm² total area (Father + Son).
- Fill factor improvement, new features for the in-pixel electronics.

CSR1

Array 1 (48 x 48 pixel

Array 3 (24 x 72 pixel

CSR3

CSR2

- Dedicated shift register for pixel selection.
- **Array1**: 75 μm x 75 μm, 1-bit memory architecture, Fill Factor : 83%.
- **Array2**: 75 μm x 75 μm, 10-bit ripple counter architecture, Fill Factor: 45%. **Array3**: 50 μm x 50 μm, 1-bit memory architecture, Fill Factor: 43%.
- **Test structure**: 75 μ m x 75 μ m, active quenching and 1-bit memory with SPADs featuring different size and technology layers.

Passive quenching with 10-bit ripple counter readout

- Counter state control logic.
- Rolling shutter operation.
- Time window definition for coincidence detection.

PM2018 – 14th Pisa Meeting on Advanced Detector, 27 May – 2 June 2018, La Biodola, Isola d'Elba (Italy)