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HL-LHC: upgrade of LHC and injectors Pp>0.9 Gev

» Baseline: L,y = 5.0x10% cm2s-' (140 pileup)
» Ultimate: Ly, = 7.5x10% cm-2s-' (200 pileup)
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Selection(): |1Az(track, PV)l <1 mm
» Optimized for track-PV association

» Substantial pileup contamination at
vertex densities > 1 event/mm

£ example

“Dissect” the luminous region in time
» Space-time vertex reconstruction with 30 ps RMS per-track
» Beam-spot time spread ~180 ps RMS

Recover LHC (40 PU) track purity of vertices

Vertex density p.d..

«  Thin layer between tracker and calorimeters
«  MIP sensitivity with time resolution of ~30 ps
o Hermetic coverage for |n|<3
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Sensor

Low gain silicon detectors (LGADs)
on HGCAL nose
- Coverage: 1.5< Inl <3.0

gain layer-
am
Galn termination

Fill Factor = Active Area / Geometrical Area

Double disk structure

- Similar to Tracker TEDD

- Al wedges with embedded cooling
Pipes (CO, at-30°C)

The fill factor is mainly determined by the
inactive gap between sensors
Current measured gap size:
~ 70 pm for CNM
~ 70 um for FBK
~ 100 um for HPK
70 um gap corresponds to a 91% fill factor
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ETL Module
Top: Flexible hybrid circuit
-
Mid: Sensors

Low radiation: radius 50 - 130 cm — 4.8 m?, ~ 90%
Medium radiation: radius 30 - 50 cm — 0.5 m?, ~ 10%
Single layer hermetic coverage stgnal
- Sensors on both disk sides
3-5% occupancy

> Higher Bias values can compensate for the gain reduction
> Carbon doped gain layer mitigates the B deactivation inside the gain layer

Bottom: ASICs

R&D ITALIA:
Sensor development (To, Ge)

Radiation Effects on Boron-Doped LGAD

> Irradiation decreases the gain layer active doping — less gain
> Increase bias to compensate gain loss — recover good time resolution

HPKSD micronsensors
Gainve.Bias 7= 20°C8 T+ 30°C

Sensor State of the Art Fill Factor Plans
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> LGAD operated with gain 0(10) for sufficient S/N n

gain layer
> Small pixel area to cope with the high occupancy at
high h values

an termination

> High radiation tolerance up to ~ 3-10%° n,o/cm?

— 30 pm gap corresponds to 96% fill factor
CNM, FBK, HPK are working towards this
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> LGAD are routinely produced by 3 vendors (CNM, FBK,
HPK)

result

> The time resolution of thin (~ 50 um) LGAD is 30-35 ps

Sensor Strategy

> The 3 vendors plan to
produce first demonstrator
of large area LGAD sensors
in 2018
1/16 of the full ETL sensor

— 1 read-out chip size

Final Goal:

> Production system of 2624 sensors — 1400 6-inch wafers

> Each sensor is 48x96 mm? with 1536 pads,

> Each pad is 1x3 mm?

Sensor Size

between active

~o-20um - AGGRESSE areasis 1mm

1% dead area

Bias Voltage [V]
(5. Galloway ot al., arxivi1707.04561]

> splitting the sensors mitigates the gain reduction due to irradiation but reduces the fill factor
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Time Resolution with Carbon

€MS goal for silicon Endcap Timing Layer
Time resolution between 30-35 ps unchanged till 4000 b - 1E15 gm/cmz
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CRUCIAL ASPECTS

Reverse Bias [V]

Detector expected performances

Performance losses at 200 PU entirely offset with timing
» Efficiency gains (5-10%) compound in multi-object final states
» Background reduction boosts sensitivity of measurements and searches
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Detector requirement

30 ps photon and track timing
o barrel: central signal

® endcap: improved
time-zero and acceptance

30 ps track timing

o barrel: central signature

o endcap: forward jet tagging
® hermetic coverage: optimal
P reconstruction
30 ps track timing

o hermetic coverage
30 ps track timing

o hermetic coverage:
30 ps track timing

o barrel: central signature
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Analysis impact

S/VB

-20% - isolation efficiency
:30% - diphoton vertex

S/VB

+30% - isolation efficiency
130% - VBF tagging

£10% - mass (piis%) resolution

signal acceptance : +20%
b-jets and isolation efficiency
S/VB

-40% - reduction of p™* tails
mass reconstruction

of the decay particle

Physics impact
(statistical)
precision on

125
cross section

120% (statistical)
precision on
cross section
(upper limit
or significance)
Consolidate
HH searches

+150 GeV
mass reach
unique sensitivity
to split-SUSY and
SUSY with com-
pressed spectra

» MTD: improves the full range of Phase-2 physics




