CMS PHASE-2 hermetic MIP Timing Detector

Endcap Timing Layer - ETL

- **Sensor State of the Art**
 - Low gain silicon detectors (LGADs) on HGCAL: noise (Coverage: 3.5 - 3.9)
 - Double disk structure: similar to Tracker TEDD
 - All wafers with embedded cooling pipes (CO2, -30°C)
 - Single layer hermetic coverage: sensors on both disk sides

- **Fill Factor Status**
 - Fill Factor: Active Area / Geometrical Area
 - The fill factor is mainly determined by the inactive gap between sensors
 - Current measured gap size:
 - 70 μm for CMS
 - 50 μm for PH
 - 100 μm for HPK
 - 70 μm gap corresponds to a 9% fill factor

- **Expected Radiation for ETL Life Time**
 - LGAD reach 30 ps time resolution for fluxes up to 5 - 6 × 10^{17} cm^{-2}s^{-1}
 - Low radiation: 50 - 150 cm
 - Medium radiation: 30 - 500 cm
 - High radiation: 100 cm

- **Sensor Strategy**
 - Radiation: Production of 244 sensors → 1620 6-inch wafers
 - Each sensor: 94mm x 94mm with 1548 pads
 - Each pad: 25μm

- **Fill Factor Plans**
 - 90% fill factor corresponds to 93% fill factor
 - CMS, PH, HPK are working towards this result

- **Radiation Effects on Boron-Doped LGAD**
 - Dose dependence of the gain (low to high dose)
 - Increase bias to compensate gain loss → recover good time resolution
 - Splitting the sensors mitigates the gain reduction due to irradiation but reduces the fill factor

- **Time Resolution with Carbon**
 - CMS goal for silicon timing based on CMS Endcap Timing Layer
 - Time resolution between 30 - 60 ps uncharged (8000 R - 15000 R) & charge sharing

- **Physics Impact**
 - **Signal**
 - Detector requirement
 - Analysis impact
 - Physics impact
 - **H → ττ**
 - 30 ps photons and track timing
 - hadron: central signal
 - endpoint: time-zero and acceptance
 - +20% isolation efficiency
 - +30% identification
 - +20% projection mass resolution
 - +20% projection mass resolution
 - +20% precision on cross section
 - **VBF → ττ**
 - 30 ps track timing
 - hadron: central signal
 - endpoint: forward jet tagging
 - hadron: hadron reconstruction
 - +40% isolation efficiency
 - +30% mass resolution
 - +20% precision on mass resolution
 - +20% precision on cross section
 - **HH**
 - 30 ps track timing
 - hadron: central signal
 - endpoint: hadrons in isolation
 - +20% precision on cross section
 - **Leptonic particles**
 - hadron: central signal
 - Endpoint: mass reconstruction
 - +10% mass resolution
 - +20% precision on mass resolution
 - **MTD**
 - Improves the full range of Phase-2 physics