

Development of the radiation hard highspeed monolithic ``MALTA" CMOS sensor for the ATLAS ITK outer pixel layer

Heinz Pernegger / CERN EP Department Heinz.pernegger@cern.ch

H. Pernegger^a^{*}, L. Argemi^c, I. Asensi Tortajada^a, I. Berdalovic^a, R. Cardella^a, F. Dachs^{*a*}, V. Dao^{*a*}, N. Egidos Plaja^{*a*}, T. Hemperek^{*b*}, B.Hiti^{*d*}, H. Krüger^{*b*}, T. Kugathasan^{*a*}, C. A. Marin Tobon^{*a*}, K. Moustakas^{*b*}, P. Riedler^{*a*}, P. Rymaszewski^{*b*}, C. Riegel^a, E. J. Schioppa^a, A. Sharma^a, W. Snoeys^a, C. Solans Sanchez^a, T. Wang^b, N. Wermes^b

ATLAS ITk Pixel Detector

Detector for HL-LHC

0.025

• η coverage increased from 2.5 to 4

Advantages over "classic" n-in-n/n-in-p sensors or traditional Monolithic Active **Pixel Sensors (MAPS)**

- Full CMOS allows complex electronics in active area of pixel matrix
- Thin and high-resolution trackers
- Large depleted volume increases sensitivity and provides efficient detection after irradiation

ATLAS CMOS Development Collaboration

• 25 institutes – RD on radiation hard CMOS sensors since 4 years

Radiation hard CMOS sensors

CMOS electronics p - substrate CMOS

Kolanoski, Wermes / Springer 2016

• CMOS is much higher volume and lower price than our present silicon

TJ180nm CMOS Process Modification

- Novel modified process developed in collaboration of CERN with TJ foundry, originally developed in context of ALICE ITS
- We carried out initial charge collection studies at HL-LHC radiation levels (~10¹⁵n_{eq}/cm²) to study a possible application towards ATLAS Itk

W. Snoevs et al. DOI 10.1016/j.nima.2017.07.046

Adding a planar n-type layer significantly improves depletion under deep PWELL

• 10,000 modules with 12 -14 m² of pixel detectors

• Itk Pixel: 5 pixel barrel layers and 5 pixel rings

All silicon design to replace present ATLAS Inner

- Design of the pixel part is being finalized: inclined layout optimization
- Monolithic CMOS sensors are developed as option for the outermost ITK Pixel Barrel layer

sensors due to high volume and larger wafers

- CMOS Modules costs ~ factor ~3 less than hybrid (no bumpbonding, no extra FE-chip)
- Increased depletion volume → **fast charge** collection by drift
- Possibility to fully deplete sensing volume with no significant circuit or layout changes

0.16

Unirradiated Peak = 16.67 sigma 1.96 ns - sigma/peak = 11.76 % 1e14 neq Peak = 16.03 sigma 2.10 ns - sigma/peak = 13.10 %

> buses to the end-of-column logic (digital periphery)

flops and transmitted

- No clock distribution over the active matrix – reduces power consumption!
- Double-column divided into groups of 2x8 pixels ("red" and "blue")

asynchronously over high-speed

- Buses shared by all groups of the same colour in the double-column
- Group number encoded on 5-bit group address bus

First measurements on TJ MALTA sensor

S-curve measurement shows expected low noise level (signal rise time 25ns)

Hitmap of the chip with a ⁹⁰Sr source Uniform response on all sectors

500

Pixel PosX

Hit merger:

delay counter

22b+1c

bits on

bits on 1x22 bits + column identifier 1x22 bits + column identifier

Time-orders hits from 2x22 bits on

22b+2c

Novel asynchronous readout

architecture for high hit rate

capability with 40bit parallel

data bus for data streaming

1x22 bits + column identifier +

22b+1c

Hit merger:

delay counter

Time-orders hits from 2x22

Hit merger:

delay counter

bits on

Time-orders hits from 2x22

