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1. In this work, we will try to reduce the general three-dimensional 
problem into a one-dimensional one, and carry out the one-
dimensional modeling and simulations for 2D-Planar-Electrode 
detectors (in Cartesian coordinate) and 3D-Trench-Electrode 
detectors (in cylindrical coordinate);

2. The electric potential and the electric field can be obtained by 
solving the Poisson equation :

3.  The weighting potential W(X) and field  can be obtained by solving 
the Laplace equation:

4.   To convert into p-type bulk material, we need to do the following 
interchanges in the figures and equations:
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Fig. 1 A 2D-Planar-Electrode pad detector with large pad electrodes (LE,x, LE,y >>d)) in 
Cartesian coordinate, b) the electric field profile along the thickness direction.
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Detector electric field is:
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the full depletion voltage is:
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The weighting potential and field are:
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Fig. 2 a) the cylindrical coordinate (r, q, z), b) a single cell of a cylindrical 
type 3D-Trench-ORJ detector.

     we can have two different detector configurations for each geometry shape. One of 
the configurations is when the junction is at the outer trench electrode, named as 3D-
Trench-ORJ (ORJ: outer-ring-junction). The other is when the junction is at the center 
column electrode, named as 3D-Trench-CJ (CJ: center-junction).

In the bulk of the single cell (not near the top and bottom surfaces), the symmetry gives 
no dependence on the θ and  z for the detector electrical properties. One can therefore 
reduce the problem to a one-dimensional one with only r:
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Fig. 5 Reduction factor in Vfd in terms of R/d for a cylindrical 3D-Trench-ORJ electrode detector as compared to a 2D-Planar-Electrode     
detector. There is no reduction when R≥         d

Fig. 6 a) Electric field profiles in a cylindrical 3D-Trench-ORJ electrode detector at various bias voltages.

Fig(6a)

    It is clear that the full depletion voltage of a cylindrical 3D-Trench-ORJ electrode detector is 
going to be reduced as compared to that of a 2D-Planar-Electrode detector if R≤      d  .
This reduction can be very significant if R<<d. 

Fig. 7 a) a cross section view of a cylindrical 3D-Trench-CJ electrode detector, b) electric field profile (super-linear).
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 The full depletion voltage of a cylindrical 3D-Trench-CJ electrode detector is going to be 
reduced as compared to that of a 2D-Planar-Electrode detector only at small ratio of 

 and small ratio of         .
does not depend on ,   and is much larger than                  :

On the other hand,                  depends greatly on  rc , and will increase with rc. Therefore 
one practical way to deplete large cells in a 3D-Trench-CJ detector is to increase the radius of 
the central collection column. 

Fig. 8 “Make-Even” radius vs. thickness for cylindrical 3D-Trench electrode detectors, above which there will be no reduction in Vfd as 
compared to 2D-Planar-Electrode detectors of equal thickness. Here rC=5 µm.

Fig. 9 Reduction factor in Vfd in terms of R/d for cylindrical 3D-Trench-CJ and ORJ electrode detectors as compared to a 2D-Planar-
Eetector. There is no reduction when for CJ and for ORJ. Here rC=5 µm.

Fig(9)Fig(8)

Fig. 10 Reduction factor in Vfd in terms of R/d with d as a parameter for the cylindrical 3D-Trench-CJ electrode 
detectors as compared to a 2D-Planar-Electrode detector. There is no reduction when                . 
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The electric field is:

Fig. 11 Electric field profiles in non-irradiated cylindrical 3D-Trench-CJ and 3D-Trench-ORJ electrode detectors (R=200 m, 
rC=5 m, 4k-cm, V=-20 volts).

Fig. 12 Electric field profiles in a non-irradiated cylindrical 3D-Trench-CJ electrode detector at various bias voltages 
(R=200 m, rC=5 m, 4k-cm).

Fig. 13 a)  A 3D view of a conventional 3D-Column-Electrode detector; b) the cross section view 

Fig. 14 Weighting filed profiles in 3D-Trench-Electrode detectors a) low R; b) medium to high R. Here rC=5 µm.

As shown in Fig 13b, in the middle of the plane marked as “path B”, there is the 
famous electric potential saddle point at which there is always zero electric field. 
Charges generated near these saddle points will first need to diffuse out of the 
region before being collected, resulting in long tails in induced current and 
incomplete charge collection. On the plane marked as “Path A”, the field profile 
will resemble that of a cylindrical 3D-Trench-CJ electrode detector. The full 
depletion is reached in a 3D-Column electrode detector when the depletion front 
reaches the n+-column; i.e. when .  The full depletion voltage can be approximated 
by Eq. (14):
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Since we always use the center column electrode as the collection electrode, the 
weighting potential and weighting field          are the same for both 3D-trench-CJ 
and ORJ electrode detectors .
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The weighting field profiles in 3D-Trench-Electrode detectors are plotted in Fig. 14 for 
various R values. The high weighting field is mainly concentrated near the center 
collection column (for r <25 µm) due to the small electrode effect. Also there are little 
difference in weighting field profiles for R≥200 µm. Due to these highly non-uniform 
weighting field profiles, only one type of carriers will dominate the induced current and 
charge. For n+-column, it will be electrons, while for p+-column, it will be holes, regardless 
of the location of the junction.   
   For conventional 3D-Column-Electrode detectors, again there are no analytical solutions 
of the Laplace equation for the weighting field, and full 3D simulations are normally 
needed. However, we can again make some approximations in some certain symmetrical 
planes. Since the boundary condition for the Laplace equation to obtain the weighting 
potential and field is that the potential is 1 at the collection electrode and 0 at all others we 
can use the field profiles shown in Eq. (33) and Fig. 14 to approximate the weighting field 
profiles on the planes “Path A” with and “Path B” with                .             

.          Any plane in between can be approximated using                      . 

222

2

2

 dRCYL
ORJ

 C
CYL
CJ rdR ,    C

CYJ
CJ

CYL
ORJ rdRdR ,

dR 5.0

 rW  rEW

CR  CR 2

CC R  2

(1)

(2)

(3)

(4)

(5)

(6)

(9) (10)

(13)

(12)

(11)

(14)

(15)

 C
CYL
CJ rdR ,

r


