Silicon Photomultiplier Detector with Multipurpose In-Pixel Electronics in Standard CMOS Technology

R. Blanco¹, I. Perić¹
¹Institute for Data Processing and Electronics (IPE), KIT-ADL (ASIC and Detector Laboratory)

Introduction
An array of single photon avalanche diodes (SPADs) has been designed in a commercial 350 nm high-voltage CMOS (AMS 350nm) process. This monolithic detector includes active quenching and readout electronics. The SPAD consists of a p+ diffusion/n-well junction surrounded by a shallow p-well acting as guard ring to prevent breakdown. The electrical signal generated by the avalanche effect is directly DC coupled to a fast CMOS comparator. The active quenching has an inhibition and reset transistor. On this poster measurements of breakdown voltage, dark count rate, surface scan and efficiency measurement are presented.

H35-SiPM ASIC
- Geometry:
 - 15 x 20 Pixels
 - SPAD size: 38 x 92 μm²
 - Chip size: 2.8 x 2.6 mm²
 - 24.3 % geometric SPAD fill factor
- Main Features:
 - Vertical and horizontal control logic
 - Fast comparator
 - Active quenching circuit (reset and inhibition)
 - Edge detection
 - Monostable circuit
 - 1-bit hit flag
 - Analog time stamp memory
 - Hit-OR bus

Pixel Architecture
- Sensor Architecture
- Matrix Readout
- Front-End Electronics
- DC SPAD Signal

Measurement Setup
- Readout System
 - Different readout modes were developed: single pixel readout and full matrix readout. An FPGA is used to configure the ASIC and detect the hit pulses from the sensor. With a special application the chip can be configured and a readout mode is selectable. Dark count map and a hit map were implemented. The ASIC is mounted on a dedicated test board.

Breakdown Voltage Measurement
- Voltage Breakdown
 - The breakdown voltage values have been determined from the current-voltage (I-V) characteristics. Using a precision source/meter unit, f=20 Hz A. A breakdown voltage of 11.7 V was measured at 24.0 °C for a SPAD pixel size of 3496 μm².

Dark Count Rate Measurement
- Dark Count Rate
 - At 32.0 V (oversupply 0.40V) a dark count rate of 850 kHz per pixel was measured.
 - This rate corresponds to 174 Hz/μm². It was observed that the DCR is weakly dependent on temperature. The trap-assisted band-to-band tunneling is responsible for the generation of free charge carriers.

Contact:
M.Sc. Roberto Blanco
Email: roberto.blanco@kit.edu
Phone: +49 721 608-29140

www.kit.edu
adl.ipe.kit.edu