Advanced Through Silicon Vias for Hybrid Pixel Detector Modules

Pixel Module Concept using TSV

- More compact hybrid pixel detector modules with active area maximization, no wire-bonds, and 4-side abuttable
- Deploy via-last TSVs into the readout chip's IO Pads to bring all IOs (power, slow control, high speed readout) to the chip's backside
- Usage of the chip backside for wiring and absorb some functionality of the module flex PCB into the Redistribution Layer (RDL)
- Integrate the fine pitch bump bonding process on thin, large chips chip into post processing of the readout wafers

Main goals

- Establish high yield TSV + RDL process for hybrid pixel modules
- Straight side vias through ultra thinned readout wafers with 2x2 cm² chip size
- Target wafer thickness of 80 100 μ m with via diameter of 60 μ m

post process via-last TSV on FE-I4 wire bond pad

TSV Processing Steps

Process developed by Fraunhofer IZM

- 1. Underbump Metallization (UBM) on wafer front side
- 2. Wafer thinning: Bonding to carrier wafer and grinding and deep reactive ion etching (DRIE)
- 3. TSV Silicon Etching: DRIE-BOSCH Process
- 4. TSV Insulation: Plasma-enhanced chemical vapour deposition (PE-CVD)
- 5. Adhesion/Barrier + Seed-Layer: Ti and highly ionised physical vapour deposition (HI-PVD) of Cu
- 6. TSV Filling: Electrochemical deposition (ECD) of Cu, liner filling
- 7. Redistribution Layer (RDL) and UBM pad metallization
- 8. Release of carrier wafer, cleaning of wafer frontside, dicing

Thinning of wafers (step 2)

Wire bonds Wire bonds Wire bonds components standard pixel detector module concept with module flex hybrid

pixel detector module concept with TSV

00

00

00

00

00

00

Etching of TSVs from wafer backside (step 3)

TSV insula-

tion and via

filling (steps

4, 5, 6)

Deposition of RDL and pad metallization (step 7)

Results of TSV test structures

- several TSV test structures for resistance, capacitance measurements and daisy chains with 168 TSVs implemented on setup wafers
- Single TSV resistance measured to be 14 15 mΩ
- Passivation breakdown measured to be >40 V for a varying passivation layer thickness of 1000 500 nm (top to bottom)
- Daisy chain and capacitance Cu-layer

ATLAS FE-I4 TSV Run

Frontside processing

- UBM deposition on the wafer front side with 25 μm bump pads on 50 μm pitch
- bonding of the wafers onto carrier
- thinning to 80 100 μm of the wafers

TSV formation processing

- silicon etching of TSV until oxide between bulk and BEOL
- oxide etching between Si bulk and poly-Si
- poly silicon etching
- oxide etching between poly-Si and M1 BEOL Cu TSV insulation

TSV filling and RDL formation processing

- TSV filling with Cu-liner filling process
- RDL formation on wafer backside
- passivation layer deposition and opening
- probe- and wire-bond pad formation with Ni/ Au deposit

Processing of three ATLAS FE-I4 wafer

- Processing completely finished with no problems and good visual inspection results
- Wafers are cut and first chips are prepared for electrical testing and flip chipping with sensors

wafer frontside after UBM process

00

 \odot

00

 $\bigcirc \bigcirc$

 $\bigcirc \bigcirc$

TSV detail, via bottom after poly-Si etch

TSV detail, via bottom after oxide etch

TSV detail, wafer surface after Si etch

Functional Testing of TSV Pixel Modules

- bare chips with TSVs and RDL are mounted on dedicated support cards allowing wire-bond connection from both chip sides
- chips can be operated from frontside or via RDL and TSV from the backside
- individual characterization of TSV properties possible for some un-used TSVs
- chips are currently prepared for first electrical tests

ATLAS FE-I4 chip with TSVs connected via the RDL side, photograph taken from a previous prototype

<u>Fabian Hügging</u>, N. Owtscharenko, D.-L. Pohl, N. Wermes - Physikalisches Institut - University of Bonn T. Fritzsch, O. Ehrmann, H. Oppermann, M. Rothermund, Piotr Mackowiak, Kai Zoschke - Fraunhofer IZM Berlin

