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Introduction
Particle identification (PID) plays a crucial role in LHCb analyses. The LHCb PID system is com-
posed of two ring-imaging Cherenkov detectors, a series of muon chambers and a calorimeter system.
Combining information from these subdetectors allows one to distinguish between various species of
long-lived charged and neutral particles. Advanced multivariate techniques are employed to obtain
the best PID performance and control systematic uncertainties in a data-driven way. A novel strategy
has been introduced in Run 2, where the selection of PID calibration data is implemented in the LHCb
software trigger, with further processing achieved through a centralised production that makes highly
efficient use of computing resources. This poster covers the major steps of the implementation, and
highlights the PID performance achieved in Run 2.

Figure 1: LHCb detector layout. The interaction point is on the left, inside the VELO detector.

Global Charged PID
Particle identification (PID) is a crucial part in high-energy physics analysis. The global charged PID
consists in identifying the charged particle type associated with a given track. There are five particle
types: electron, muon, pion, kaon, proton, and ghost track (charged tracks that do not correspond to
a real particle which passed through the detector). This is a multiclassification problem in machine
learning. Global PID uses the information from all LHCb systems: tracking system, RICHs, the
electromagnetic and hadronic calorimeters and muon chambers are used as inputs for the following
classifiers:

• ProbNN [1] (baseline): One hidden layer neural network of TMVA library.
•Deep NN: Deep neural network of Keras library.
•CatBoost [2] : Gradient boosting over oblivious decision trees classifier.
• Flat 4d: Boosted decision trees classifier with flat dependency of signal efficiency from particle P ,
PT , η and nTracks (event multiplicity) observables.

The classifiers were trained on a MC sample containing all of the different charged particle types.
Calibration samples, containing particles that can be identified purely based on only kinematic prop-
erties, were used to estimate the classifier performance on real data. The samples contain decays that
allow to identify particle types based on only kinematic properties. The PID performance of each
classifier is shown in Fig 2.
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Figure 2: Dependences between background rejection and signal efficiency for six particle pairs.

The PID information strongly depends on the kinematic variables. This relationship leads to strong
dependency between PID efficiency and kinematic variables as shown in Fig 3. Relative to the base-
line model, the Flat 4d model has a flatter PID efficiency as a function of the kinematic variables.
The classifier achieves this flatness using a modified loss function [3].

Figure 3: Dependence between Flat 4d model efficiencies and particle transverse momentum for each particle type. The
curves correspond to the same global signal efficiency of 60%.

Neutral PID
Identification of neutral particles is based on responses in the calorimeter system. The particular
problem is to separate prompt photons produced in collisions and photons produced by π0 which
decay into two photons. The most confusing case is when two photons from the π0 decay are highly
collinear, which look similar to single clusters produced by prompt photons. ECAL energy deposits
for a prompt photon (left) and photons from a π0 decay (right) are shown in Fig 4.

Figure 4: Energies in 5 × 5 ECAL cells around the cell seed for single photon (left) and for π0 (right).

Two machine learning based models are used to separate these cases:
• Baseline [4]: A 2-layer neural network of TMVA library. The NN inputs are features that describe

a cluster shape in 3× 3 ECAL cells area around the cluster seed. Example of the features: center of
gravity of a cluster energy, second moments of the cluster shape Sxx, Syy, Sxy and their functions.
•New method: XGBoost classifier which is a Gradient Boosting over Decision Trees classifier. In-

puts are raw energy values in 5 × 5 ECAL and PS cells around the cell seed as shown in Fig 4.
There are no any additional input features.

The models were trained using MC samples. Photons and π0 are generated from B0 → Kπγ and
B0 → Kππ0 decays respectively. Two additional decays B0 → J/ψK∗ and K∗ → Kπ0 are used
as an additional source of π0 to check the models stability. The performance of γ-π0 separation is
demonstrated in Fig 5.
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B→Kππ0  ROC, AUC=0.95

B→Kππ0  ROC Baseline, AUC=0.81

B→J/ψK ∗ (Kπ0 ) ROC, AUC=0.96

B→J/ψK ∗ (Kπ0 ) ROC Baseline, AUC=0.82

γ efficiency = 98% 

Figure 5: Classification ROC curves for the baseline (dashed line) and new method (solid line). Different colors refer to
different test samples.

Conclusions
Combining information from the LHCb tracking system, ring-imaging Cherenkov detectors, electro-
magnetic and hadron calorimeters, and muon chambers using advanced machine learning techniques
allows to achieve high background rejection in high signal efficiency regions for charged particle
identification. Energy deposits in the calorimeter system provide good prospects for background
suppression for neutral particle identification.
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